
CranGAN: Adversarial Point Cloud Reconstruction for patient-specific Cranial Implant Design

INTRODUCTION
Cranioplasty is a surgical procedure to repair a bone defect in the 
skull due to a previous injury or an operation, such as a 
craniectomy. The procedure involves fitting a cranial implant in the 
region affected to replace the cranial bone. Prior to the surgery, 
careful designing of the cranial implant is a challenging and 
important task. The current method is to first obtain CT scans of the 
defected skull, convert them into a 3D mesh and then manually 
design the implant using CAD software which is expensive, not 
always accessible to clinical  institutions and time-consuming. A 
flexible and computationally efficient process must be developed to 
resolve these issues in cranioplasty.

CONCLUSIONS
This paper presents a 3D GAN network for cranial implant 
design. We utilize point cloud representations and 
demonstrate the effect of utilizing two 3D reconstruction 
losses while experimenting with three GAN objectives. We 
believe this work will inspire further research in this 
domain and consequently provide for an accurate and 
efficient approach to automatizing cranial implant design 
for biomedical purposes [3]. Finally, we plan to add 
CranGAN to StudierFenster (www.studierfenster.at) in the 
future, to provide an end-user friendly version to the 
community.

RESULTS

METHOD
CranGAN is formulated as an auto-encoder that processes 1024-
point point clouds with an adversarial discriminator. The encoder is 
adapted from PointNet [1] and the decoder is a fully connected 
neural network. The discriminator is adapted from [2] and is 5-layer 
deep fully connected network. For optimization, 3D Reconstruction 
Losses - Hausdorff Loss and Chamfer Loss are employed.
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AIM
We present CranGAN - a 3D Conditional Generative Adversarial 
Network designed to reconstruct a 3D representation of a complete 
skull given its defective counterpart through point-cloud 
representations. We hope that our work inspires further research in 
this direction. 
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A. Toy Experiments

To ensure correctness of our approach, we first test 

our method on a toy dataset that is relatively less 

complex. A 2048-point point cloud of a sphere (of 

radius 1) is used and 1024-point point clouds are 

randomly sampled from it. In a similar setting to our 

main task, we expect the output to be a 1024-point 

point cloud in the shape of a complete sphere.

B. Main Experiments

We also provide multiple views of the results as an 

example for our main task. As an additional 

experiment, we also test our model on point clouds 

sampled purely from the ROI. In each of the figures, 

red points represent the input point cloud, green 

points represent the ground truth and blue points 

represent the output of the model.

C. Outlier Removal and Surface Reconstruction

Since point cloud visualizations are relatively difficult 

to comprehend through 2D images, we try to provide 

better visualizations by reconstructing surfaces of the 

point clouds (output and ground truth). Prior to this, 

we perform a singular post-processing step of outlier 

removal on the synthesized point clouds. We then 

reconstruct surfaces from both the synthesized and 

ground truth point clouds for better visualization.

Figure B. Multiple views of the results on the skull data using 

Chamfer and Hausdorff Loss, with a Vanilla GAN setting.

CONTACT INFORMATION
Harsh Sulakhe – f20180186@pilani.bits-pilani.ac.in

Jianning Li – jianning.li@uk-essen.de

Jan Egger – jan.egger@uk-essen.de

Poonam Goyal – poonam@pilani.bits-pilani.ac.in

H. Sulakhe1, J. Li2, J. Egger2, P. Goyal1

1 Birla Institute of Technology and Science, Pilani

2 Institute for AI in Medicine (IKIM), University Hospital Essen

a) Front View b) Top View c) Side View

a) Chamfer Loss + Vanilla GAN b) Chamfer Loss + WGAN-GP

Figure A. Results of a few experiments on the toy dataset.

Figure C. Surface reconstructions of point clouds from an 

example data point. Blue - prediction, Green - ground truth.
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TABLE I: Results of CranGAN on the toy dataset.

TABLE II: Results of CranGAN on the main experiments.

Illustration of the CranGAN architecture
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