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Cranioplasty is a surgical procedure to repair a bone defect in the A. Toy Experiments " ] 02 0915
skull due to a previous injury or an operation, such as 3 To ensure correctness of our approach, we first test Vanilla ) v 1'307 0.644
craniectomy. The procedure involves fitting a cranial implant in the our method on a toy dataset that is relatively less § g 1.488 0.716
region affected to replace the cranial bone. Prior to the surgery, complex. A 2048-point point cloud of a sphere (of ~ ‘ '
careful designing of the cranial implant is a challenging and radius 1) is used and 1024-point point clouds are ) Chamer Loss + Vanila GAN ) Chamer Loss + WGAN.GP - 1.537 0.703
important task. The current method is to first obtain CT scans of the randomly sampled from it. In a similar setting to our WGAN-GP i v 1.219 0.656
defected skull, convert them into a 3D mesh and then manually main task, we expect the output to be a 1024-point Figure A. Results of a few experiments on the toy dataset. v v 1.420 0.901
design the implant using CAD software which is expensive, not point cloud in the shape of a complete sphere. v - 1.520 0.695
always accessible to clinical institutions and time-consuming. A Main Experiments | LSGAN - v 1.241 0.564
flexible and computationally efficient process must be developed to ' v v 1.472 0.715
resolve these issues in cranioplasty. We also provide multiple views of the results as an

examp|e for our main task. As an additional TABLE I: Results of CranGAN on the toy dataset.

experiment, we also test our model on point clouds Fah B o

sampled purely from the ROI. In each of the figures, - - L Hausdorff Chamfer Hausdorff .
A I M red points represent the input point cloud, green ) Front View b) Top View ¢) Side View GAN Objective Loss Loss Distance Chamer Distance
We present CranGAN - a 3D Conditional Generative Adversarial points represent the ground truth and blue points B Muliole views of the resulis on the skull data usin v _ 25.477 12.113
Network designed to reconstruct a 3D representation of a complete represent the output of the model. Chamfer and Hausdorf Lose&eviiltjhz(i/aniﬁasGiN zeatltil:msgl. ¥ Vanilla - 4 43.911 25.257
skull given its defective counterpart through point-cloud C. Outlier Removal and Surface Reconstruction v v 48.483 25.532
;ﬁirzisferi?gsn& We hope that our work inspires further research in Since point cloud visualizations are relatively difficult v ] 42.994 23.752

to comprehend through 2D images, we try to provide WGAN-GP ; v 26.525 12.504

better visualizations by reconstructing surfaces of the v v 30.333 13.063

point clouds (output and ground truth). Prior to this, 4 - 27.357 12.313

we perform a singular post-processing step of outlier LSGAN - v 248.321 177.559
M ETH O D removal on the synthesized point clouds. We then v v 35.643 18.350
CranGAN is formulated as an auto-encoder that processes 1024- reconstruct surfaces from both the synthesized and eifrl:]ﬁecaastgr:,i?ﬁt_r%ﬁﬁgﬁtgrzté?:tfoﬁf ereen I?;gsuf;?jr?ﬂ?t?]_ | |
point point clouds with an adversarial discriminator. The encoder is ground truth point clouds for better visualization. | TABLE Il Results of CranGAN on the main experiments.

adapted from PointNet [1] and the decoder is a fully connected

neural network. The discriminator is adapted from [2] and is 5-layer
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