FAM: Relative Flatness Aware Minimization

Linara Adilova¹ linara.adilova@rub.de

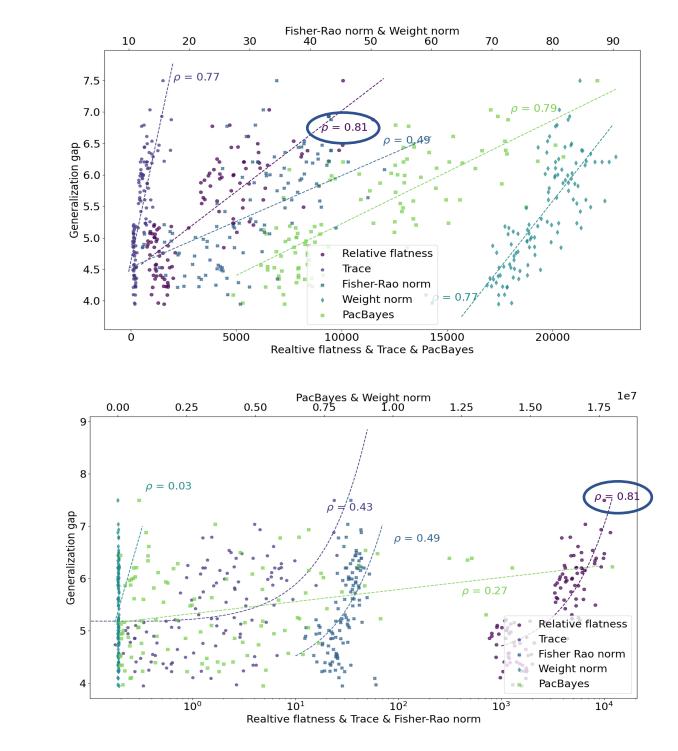
Henning Petzka³ petzka@cs.rwth-aachen.de Amr Abourayya^{1,2} amr.abourayya@uk-essen.de

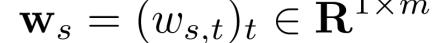
Jan Egger^{2,4} jan.egger@uk-essen.de Jianning Li² jianning.li@uk-essen.de

Jens Kleesiek² jens.kleesiek@uk-essen.de Amin Dada² amin.dada@uk-essen.de

Michael Kamp^{1,2,5} michael.kamp@uk-essen.de

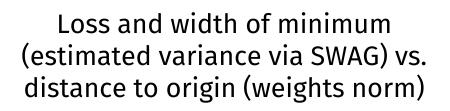
Relative Flatness

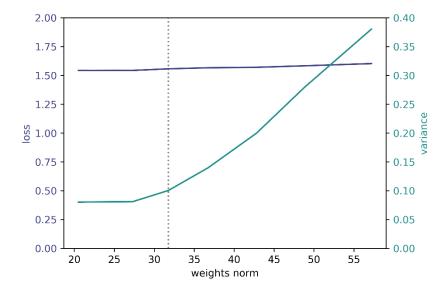

Taylor approximation on feature robustness derives a **reparameterization-invariant flatness measure** using the weights of one chosen layer


$$\kappa_{Tr}^{\phi}(\mathbf{w}) := \sum_{s,s'=1}^{d} \langle \mathbf{w}_s, \mathbf{w}_{s'} \rangle \cdot Tr(H_{s,s'}(\mathbf{w}, \phi(S)))$$

where
$$H_{s,s'}(\mathbf{w},\phi(S)) = \left[\frac{\partial^2 \mathcal{E}_{emp}(\mathbf{w},\phi(S))}{\partial w_{s,t}\partial w_{s',t'}}\right]_{1 \le t,t' \le m}$$

$$() = 1 \vee m$$


Comparing Flatness Measures (CIFAR-10)



- **Relative** flatness: the further away from origin, the flatter minimum must be for same generalization. For symmetries, this can be empirically observed.
- Good generalization can be achieved by **regularizing the geometry of the minimum**
- Regularizing via relative flatness provides **generalization bound**

$$\mathcal{E}_{gen}\left(\mathbf{W},S\right) \lesssim |S|^{-\frac{2}{4+m}} \left((2m)^{-1}\kappa_{Tr}^{\phi}(\mathbf{w}^{l}) + C_{1} + \frac{C2}{\sqrt{\delta}}\right)$$

Relative Flatness Aware Minimization

For a training set S and a differentiable loss function $\ell(S, \mathbf{W})$ the regularized objective is $\ell(S, \mathbf{W}) + \kappa_{Tr}^{\phi}(\mathbf{w}^l)$ for selected layer l.

The overall complexity of computing the regularizer is in $\mathcal{O}(|\mathbf{W}| + d^2m^2)$, where d, m is dimensionality of the layer l selected for regularization, i.e., $\mathbf{w}^l \in \mathbb{R}^{d \times m}$.

Evaluation

Image Classification Datasets

	Baseline	SAM	FAM		
CIFAR10	95.53 ± 0.0001	95.61 ± 0.001	95.62 ± 0.002		
CIFAR100	84.48 ± 0.12	85.72 ± 0.08	87.2 ± 0.05		
SVHN	97.72 ± 0.02	97.84 ± 0.05	97.81 ± 0.07		
FashionMNIST	94.57 ± 0.28	94.99 ± 0.02	94.6 ± 0.04		

Natural Language Processing Task

Skull Reconstruction Problem

methods	evaluation set 1				evaluation set 2							
	DSC	DSC (100)	HD	HD (100)	HD95	HD95~(100)	DSC	DSC (100)	HD	HD (100)	HD95	HD95(100)
baseline	0.6464	0.6569	7.0130	7.1787	2.0635	2.0422	0.6413	0.6489	7.1421	7.1939	2.0924	2.1371
FAM, $\lambda = 0.0006$	$\overline{0.7155}$	$-\bar{0}.\bar{6}8\bar{1}\bar{7}$	6.5531	-6.7772	$1.8\overline{2}0\overline{2}$	$\overline{1.8281}$	0.7156	0.6762	$\overline{6.5542}$	$-\bar{7}.\bar{0}1\bar{1}5$	$\bar{1}.\bar{8}1\bar{7}\bar{8}$	1.9088
FAM, $\lambda = 0.002$	0.7173	0.7175	6.4813	6.5478	1.8175	1.8281	0.7175	0.7176	6.4813	6.5478	1.8148	1.8281
FAM, $\lambda = 0.02$	0.7176	0.7168	6.5221	$\boldsymbol{6.5271}$	1.8210	1.8344	0.7176	0.7168	6.5221	6.5271	1.8210	1.8344
FAM, $\lambda = 0.1$	0.7176	0.7169	6.5085	6.5222	1.8210	1.8345	0.7176	0.7169	6.5085	6.5222	1.8210	1.8345
FAM, $\lambda = 0.7$	0.7177	0.7169	6.5202	6.5389	1.8210	1.8359	0.7177	0.7169	6.5202	6.5389	1.8210	1.8359

[1] Ruhr University Bochum, Germany

[2] Institute for AI in Medicine (IKIM), Germany

[3] RTWH Aachen, Germany

[4] TU Graz, Austria

MONASH University [5] Monash University, Australia