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Abstract. In the treatment of head and neck cancer, physicians can
benefit from augmented reality in preparing and executing treatment. We
present a system allowing a physician wearing an untethered augmented
reality headset to see medical visualizations precisely overlaid onto the
patient. Our main contribution is a strategy for markerless registration
of 3D imaging to the patient’s face. We use a neural network to detect
the face using the headset’s depth sensor and register it to computed
tomography data. The face registration is seamlessly combined with the
headset’s continuous self-localization. We report on registration error and
compare our approach to an external, high-precision tracking system.
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1 Introduction

Medical applications can benefit from augmented reality (AR) interfaces, e.g.,
by providing a more intuitive mental mapping from 3D imaging data to the pa-
tient [1]. In particular, immersive AR systems combine natural 3D interaction
with an increased spatial perception of 3D structures [2]. In this contribution, we
present a method for immersive medical visualization in the head and neck area
using a commercial AR headset with optical see-through display, the Microsoft
HoloLens (Microsoft Corporation, Redmond, WA, USA). Our system works in
an unprepared environment and achieves registration based on facial surface
matching at real-time frame rates by registering 3D imaging data directly to
the patient’s face as observed by the headset’s depth sensor. Moreover, we take
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Fig. 1. Overview of the proposed five-step registration pipeline.

advantage of the built-in self-localization capabilities of the headset. The combi-
nation of facial detection and self-localization enables fully untethered, real-time
markerless registration.

Related Work Usually, image data is acquired offline, e.g., through magnetic
resonance (MRI) or computed tomography (CT) imaging, and must be regis-
tered to the patient in the physician’s view with high accuracy, thus establishing
a relationship between physical and virtual space. Several studies for medical
AR do not estimate this relationship at all, instead relying on the manual place-
ment of medical content with respect to the virtual world [3, 4]. Others establish
this correspondence using outside-in tracking based on markers rigidly attached
to the patient [5], or external devices, e.g., optical or depth sensors [6, 7]. How-
ever, such outside-in approaches require complicated preparation and must be
calibrated in situ, which disrupts clinical workflow and therefore hinders accep-
tance. As an alternative, inside-out methods utilizing self-localization techniques
have recently been explored in the context of medical AR using intra-operative
X-ray images or manually selected landmarks as a registration strategy [8, 9].

Contribution For applications involving the face, such as in surgery planning
of head and neck cancer, the opportunity arises to use facial features for both
registration and tracking. Thus, in our contribution, we present a strategy for
markerless, inside-out image-to-face registration, which, in combination with the
self-localization of the headset, enables untethered real-time AR to aid physicians
in the treatment and management of head and neck cancer.

2 Methods

Our goal was to build a system for 3D image registration using only the head-
set hardware. Our solution combines two sensor pipelines, the headset’s self-
localization and facial localization using the headset’s depth sensor. The self-
localization runs an algorithm for simultaneous localization and mapping (SLAM)
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Fig. 2. Coordinate systems and their transformations to be computed during image-
to-patient registration. The goal is to find HTCT , the relative pose of the PET-CT
coordinate system CT with respect to the physician, denoted by H.

on a dedicated hardware accelerator, fed by multiple cameras on the headset,
and delivers robust and accurate camera poses [10]. The depth sensor provides
the ability to detect the patient’s face as represented in the 3D image data. The
depth sensor faces forward and is pre-registered with the user’s field of view,
conveniently allowing direct superposition of computer-generated visuals. We
build a pipeline that performs competitive sensor fusion [11] between the self-
localization component and a custom pipeline for face registration in five steps,
labeled S1-S5, as shown in Figure 1:

S1 Obtain and preprocess medical image data
S2 Obtain an update from the self-localization
S3 Apply a neural network for face detection on incoming depth images, followed

by extraction of a point cloud
S4 Coarsely register the 3D image data to the depth image using point feature

histograms; refine the registration using an iterative closest point method
S5 Render overlay using the registration obtained by combining S2 with S3/S4

Out of these five steps, only S1 is performed offline. All other steps are run online,
but S3/S4 can be run at a lower than full frame without affecting overall system
performance. To correctly overlay virtual content with the physical world, we
need to estimate HTCT (t), the rigid 3D transformation which correctly positions
content in the coordinates of pre-interventional CT acquisitions CT with respect
to the physician wearing the headset H at time t. Consequently, a series of
transformations (Figure 2) has to be estimated as follows:

HTCT (t) =W T−1H (t) ·W TH(t0) ·P T−1H (t0) ·P TCT (t0), (1)

with W and P representing the world and patient coordinate system, respec-
tively. HTCT (t) aligns the patients face and PCT , denoting the point cloud rep-
resentation of the patients’ skin surface recovered from CT, obtained in S1. We
describe each of the steps S1-S5 in detail in the following sections.
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2.1 Medical Imaging Data Processing

In the pre-interventional, offline step S1, we acquire 18F-fluorodeoxy-D-glucose
positron emission tomography-computed tomography (18F-FDG PET-CT) data,
which is essential in the diagnosis and evaluation of head and neck carcinomae
due to its ability to combine functional information from PET with anatomical
information from CT [12]. Volumetric CT image data of the patient is seg-
mented into skin surface and anatomically relevant structures for visualization,
and checked using Studierfenster (studierfenster.at). Polygonal meshes are
extracted using Marching Cubes algorithm; then, a point cloud representation
of the skin surface PCT is created for usage in consecutive registration steps.
Similarily, tumor sufaces are extracted from co-registered 18F-FDG PET acqui-
sitions, which exhibit high contrast for metabolically active tumors.

2.2 Self-Localization

Step S2 obtains WTH , the poses of the surgeon’s viewpoint with respect to world
coordinates, using the headset’s SLAM-based self-localization system [13]. We
use the camera poses delivered by the headset and associate them with the face
model created in S3 using the registration procedure of S4. We do not use the
geometric model of the SLAM system, since it is too coarse for our purposes.

2.3 Face Detection and Extraction

Step S3 denotes the acquisition of a point cloud representation of the patient’s
face from the depth sensor. A region of interest (ROI) around the patient’s head
is found automatically and in real-time by using a neural network. It relies on
a single-shot-multibox detector (SSD) [14] using a ResNet-10 architecture, pre-
trained for face detection. SSD performs object localization in a single forward
pass by regressing a bounding box around objects. If detection is successful, the
ROI is mapped to the depth image to create a point cloud using an inverse
perspective transformation (PTH)−1. Given a position in the depth frame m =
[u, v] in pixel units and the depth camera’s intrinsic matrix K, the corresponding
scene point in camera coordinates p = [x, y, z]T can be calculated by

p =

xy
z

 = K−1

uv
1

 d(u, v) =

fx 0 cx
0 fy cy
0 0 1

−1 uv
1

 d(u, v), (2)

where d(u, v) denotes the depth at [u, v]. This inverse projection is applied to
all pixels within the ROI around the patient’s face, resulting in a point cloud
PP = {p2,p2, ...,pN} which represents the face in headset coordinates.

2.4 Aligning Pre-interventional Data with the Patient

For step S4, we take advantage of the distinctive nature of a human’s facial fea-
tures to enable a markerless, automatic, two-stage registration scheme inspired
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by the method proposed by Holz et al. [15]. Since the facial surface of humans is
usually not subject to any major soft tissue deformations, a rigid transformation
PTCT , which aligns the point cloud from pre-interventional imaging PCT with
the target point cloud representing the patient PP , is estimated. To compute an
initial alignment, we adopt registration based on fast point feature histograms
(FPFH) [16]. FPFH features are computed in both point clouds and reciprocally
matched using 1-nearest-neighbor search, resulting in κf = {(fP , fCT )}, a set of
correspondence points found by matching FPFH features of PP and PCT . The
fast global registration algorithm by Zhou et al. [17] is applied to compute an
initial transformation P T̂CT such that distances between corresponding points
are minimized:

E(P T̂CT ) =
∑

(fP ,fCT )∈κf

ρ(||fP −P T̂CT fCT ||), (3)

where ρ(.) is a scaled German-McClure estimator, a robust penalty for optimiza-
tion. The initial transformation P T̂CT is then refined using point-to-plane ICP
[18], resulting in the final alignment PTCT . We define the correspondence set as
the actual 1-nearest-neighboring points κ = {(pP ,pCT )} and optimize

E(PTCT ) =
∑

(pP ,pCT )∈κ

((pP −P TCTpCT ) · npp)2, (4)

where npp is the normal of point pP . This combination of rapid feature matching
and ICP refinement allows a robust, accurate and fast computation of PTCT .

2.5 Visualization Using Augmented Reality

In step S5, we use the transformation obtained in previous steps to render virtual
content in a way that it is anchored to world coordinates using WTCT . As long
as the patient remains stationary, WTCT can be computed at a much lower
framerate than WTH . This makes the system comfortable to use, allowing the
surgeon to look away from the patent’s face and preserve registration of virtual
objects when returning to the patient, even without re-detection of the face,
simply by receiving an update of WTH(t). If the patient moves, re-detection
of the face leads to instant re-registration of the overlaid virtual objects, by
simply updating PTCT . Figure 3 shows an example of bones and tumoral masses
registered with the patient.

3 Experiments and Results

We evaluted end-to-end registration using phantom heads by 3D-printing CT
scans from step S1. We chose eight subjects with cancerous tumors in the
head/neck area, for which PET-CT imaging was available. Furthermore, we show
our application’s feasability with a human subject. To avoid unjustifiable radia-
tion exposure, a MRI scan was used to extract the isosurface of the skin.
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a) b) c)

Fig. 3. Example AR visualization on a patient phantom. By registering a point cloud
to the patient’s face as in a), bones and a tumoral mass can be overlaid as shown in
b). Registration persists if the physician changes his viewpoint, seen in c).

3.1 Target Registration Error

The target registration error (TRE) is computed to evaluate the end-to-end
registration accuracy of the proposed system. It is defined by

TRE =
1

Nk

Nk∑
k=1

||HTCTmCT
k −mH

k ||, (5)

where Nk is a number of reference points; mCT and mH are the reference points
in the CT data and the headset’s view, respectively. Since data obtained from
the clinical routine is used in this study, there are no fiducial markers in pre-
interventional data, which could be used as reference points for TRE computa-
tion. Therefore, Nk = 5 landmarks, namely, the left/right inner canthus, the tip
of the nose and the left/right labial commissure of mouth, were labeled manually
in CT data and later selected in the operator’s view to obtain mH and mCT . We
repeated TRE measurement 10 times for each patient phantom as well as the
human subject, at distances ranging from 50 cm to 90 cm between operator and
patient, using slightly changing viewing angles. Table 1 summarizes the TRE for
phantoms 1-8 as well as the human subject, averaged over all measurements.

3.2 Comparison with a High-precision External Tracking Device

We compare HTCT derived from our application with the transformation com-
puted by an external infrared tracking system, consisting of 15 OptiTrack Flex
13 cameras (NaturalPoint, Inc., Corvallis, OR, USA). We rigidly attached a set

HTTPT

HTCT

CTTPTHTHT

CT (registered to the patient)CT (registered to the patient)

Patient trackerPatient tracker

Headset trackerHeadset tracker

HeadsetHeadset

Fig. 4. Coordinate systems for comparing HTCT to HTTPT from an external infrared
tracking system. CTTPT and HTHT are estimated using hand-eye calibration.
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Table 1. Target registration error (TRE) of five reference points, as well as error in
translation Et and rotation Er between the transformation STCT and the equivalent
transformation STOT

CT obtained from an external infrared tracking system.

Subject 1 2 3 4 5 6 7 8 Human Total

TRE
(mm)

Mean 9.4 9.4 10.2 6.7 10.5 11.4 7.1 10.2 8.1 9.2
Sd 2.3 0.8 1.7 1.3 2.2 2.2 0.7 1.4 1.0 1.5

Et

(mm)
Mean 5.4 2.0 3.1 6.7 3.1 2.3 7.0 3.0 4.3 3.9

Sd 2.1 1.9 3.0 1.8 1.7 1.7 2.3 2.0 1.7 1.8

Er

(◦)
Mean 4.9 5.7 5.4 11.0 2.9 2.4 4.4 5.6 9.8 4.9

Sd 3.7 2.4 3.5 2.5 1.8 1.9 1.9 3.2 1.8 2.4

of non-collinear retro-reflective markers to the headset and our patient phan-
toms or human subject for the computation of HTTPT , the relative pose of the
patient tracker with respect to the HoloLens tracker from the OptiTrack. To
correlate these transformations, HTHT , which calibrates the headset tracker and
the virtual camera of the HoloLens, as well as CTTPT , the transformation from
the patient tracker to the CT coordinate system (already registered to the pa-
tient), needed to be estimated by hand-eye calibration methods [19], as shown
in Figure 4.
This is performed in two steps. First, for estimating HTHT , we built a custom
calibration object using ArUco markers [20] augmented with retro-reflective op-
tical markers, which allows tracking of the object with both the headsets RGB
camera and the OptiTrack system. Similarly, to compute CTTPT , we utilize face
pose estimation to track faces in RGB frames together with the infrared tracking
system. By observing those objects through different viewing angles, we estimate
HTHT and CTTPT . Thus, we can compute HTOTCT , the reference transformation
obtained by the OptiTrack system, as HTOT

CT =HTHT ·HTTPT ·(CTTPT )−1. To quantify
the error between transformations, we evaluate the error in distance as well as
the angular error separately. Again, measurements were taken at 10 different
time points, under varying angles and distances, and averaged. The results ob-
tained from all patient phantoms, as well as the results from our experiments
with a human subject, are summarized in Table 1.

4 Discussion and Conclusion

We presented a novel end-to-end solution to the image-to-patient registration
problem in AR using optical see-trough headsets. Our markerless registration
scheme works fully automatically in an unprepared environment, by exploiting
the distinct characteristics of human faces. It computates the transformation
aligning pre-interventional 3D data with the patient in the surgeon’s view. We
evaluated accuracy with patient phantoms and a human test person, reporting
a mean TRE of 9.2 ± 1.5 mm and an average error in comparison to a high-
precision optical tracking system of 3.9 ± 1.8 mm in translation and 4.9 ± 2.4 ◦in
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rotation. The accuracy of HTCT is subject to several error sources, partly due
to hardware restrictions: A residual error remains due to the rather low quality
of point cloud representation acquired from the headset’s depth sensor. More-
over, inaccuracies and latency of the HoloLens self-localization may affect the
overall precision, and hologram stability could be an issue [21]. Finally, opti-
cal see-through display calibration was not considered, as we expect that future
hardware will support auto-calibration using eye tracking.
While our system does not yet achieve the sub-millimeter precision required for
image-guided intervention, it represents a promising all-in-one tool for immer-
sive treatment and intervention planning in the management of head and neck
cancer. As others before us [2, 8], we believe that the Microsoft HoloLens has
great potential for clinical and educational applications in medicine, especially
considering the imminent release of the HoloLens 2, which has much improved
hardware and software capabilities.
As a next step, we plan a clinical evaluation of our system involving a patient
study, for which ethics approval has recently been obtained. This study should
demonstrate the benefits of AR to physicians in the treatment of head and neck
cancer. Other future work includes a more refined visualization and 3D interac-
tion to provide guidance to surgeons during intervention planning.
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