Universitat
Marburg

Philipps

Department of Mathematics and Computer Science
Distributed Systems Group
Prof. Dr. B. Freisleben

SEMI-AUTOMATIC, GRAPH-BASED VERTEBRA
SEGMENTATION IN MRI DATA

by

Robert Schwarzenberg

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
BACHELOR OF SCIENCE
in

COMPUTER SCIENCE

Title:

Author:

Submission:

Examining supervisor:

External supervisor:

Semi-Automatic, Graph-Based Vertebra
Segmentation in MRI Data

Robert Schwarzenberg
Hofstatt 19/20

35037 Marburg
Germany

October 5, 2012
University of Marburg, Marburg, Germany
Department of Mathematics and Computer Science

Prof. Dr. Bernd Freisleben
University of Marburg, Marburg, Germany
Department of Mathematics and Computer Science

Dr. Dr. Jan Egger

Harvard Medical School, MA, USA
Brigham and Women’s Hospital
Department of Radiology

University of Marburg, Marburg, Germany
Department of Mathematics and Computer Science
Department of Medicine

Abstract

The subject area of this thesis primarily covers vertebral body seg-
mentation in volumetric MRI data, however the algorithm presented
here also targets other cubic-shaped, anatomical structures. Auto-
matic, computer-aided vertebra segmentation aims to decrease the
time physicians spend on the preoperative evaluation of surgical pa-
tients.

The foremost problems in the field of vertebral segmentation are
weak boundaries and outliers inside the structure. The newly devel-
oped approach tackles these difficulties by using a cubic-shaped tem-
plate: it allows the user to impose a smoothness constraint A on the
segmentation result, where a A-value of zero results in a regular, cu-
bic shape, while a A-value greater than zero permits a corresponding
deviation.

For this, the algorithm generates a weighted, two-terminal graph
G = (V(G), E(G)) (s-t-network) within the cubic template. After its
construction, the minimal closed set on the graph is computed via a
polynomial time s-t-cut, creating a 3D segmentation of the vertebral
body.

The nodes v € V(G)\{s,t} correspond to voxels that are dis-
tributed along a number of rays which extend from a user-defined seed-
point inside the vertebral body and intersect with its outer boundaries.

Each vertex is connected to a virtual source s and a virtual sink ¢
and the capacities of the corresponding edges reflect a node’s affiliation
with the source (vertebra) and the sink (background). Furthermore,
the algorithm sets up a set of infinity-weighted edges, connecting the
vertices on a ray and a set of infinity-weighted inter-ray edges. The
latter implements the smoothness constraint while the first set ensures
that each ray is cut exactly one time, ideally right in front of the outer
boundaries.

An evaluation of the algorithm led to an average DSC of 81.88%,
ranging from 71.64% to 86.69%. The computationally most intensive
parameter settings resulted in a processing time of 19.1 seconds (2.1
GHz, 4 GB RAM).

Zusammenfassung

In dieser Arbeit wird ein neuer Ansatz zur dreidimensionalen Wir-
belkorpersegmentierung in MRT Aufnahmen présentiert, der sich auch
zur Segmentierung anderer, wiirfelférmiger anatomischer Strukturen
eignet. Die automatische Segmentierung von Wirbeln zielt darauf ab,
die Zeit, die Mediziner fiir die prédoperative Evaluierung von Patienten
aufwenden, zu verkiirzen.

Im Kontext von Wirbelsegmentierungen stellen homogene Objekt-
Hintergrundiiberginge sowie Ausreifler innerhalb der anatomischen
Struktur die groBten Herausforderungen dar. Der hier présentierte
Algorithmus begegnet dem, indem er das Segmentierungsergebnis ei-
ner wiirfelférmigen Vorgabe anndhert: Dem Nutzer ist es moglich,
den Grad A der Abweichung des Segmentierungsergebnisses von einer
Wiirfelform zu bestimmen. Ist A gleich null, so nimmt die Segmentie-
rung eine reguldre Wiirfelform an, bei einem A-Wert iiber null sind
entsprechende Abweichungen moglich.

Hierzu generiert der Algorithmus einen gerichteten zweiterminalen
Graph G = (V(G), E(G)) (s-t-Netzwerk) innerhalb der wiirfelfsrmigen
Vorgabe. Nach der Konstruktion wird in polynomialer Laufzeit ein
minimaler s-t-Schnitt berechnet, der die Knoten v € V(G) in zwei
disjunkte Mengen teilt, aus denen dann die Segmentierung ermittelt
wird. Die Knoten v € V(G)\{s, t} entsprechen Voxeln, die sich entlang
mehrerer Strahlen in der MRT-Aufnahme verteilen, wobei alle Strah-
len ihren Ursprung in einem benutzerdefinierten Saatpunkt haben und
die Auflengrenzen des Wirbelkorpers durchstoflen.

Jeder Knoten ist zudem iiber jeweils eine Kante e € E(G) mit
einer virtuellen Quelle s und einer virtuellen Senke ¢ verbunden. Die
Kapazitidten der entsprechenden Kanten reflektieren hierbei die Affi-
nitit eines Knoten zur Quelle (Wirbel) und zur Senke (Hintergrund).
AuBlerdem konstruiert der Algorithmus eine Menge von unendlich ge-
wichteten Kanten, die die Knoten auf einem Strahl untereinander ver-
binden und eine Menge unendlich gewichteter Kanten, die Knoten,
auf verschiedenen Strahlen verbinden. Die letztere Menge implemen-
tiert die benutzerdefinierte Abweichung, wiahrend die erstbeschriebene
sicherstellt, dass jeder Strahl genau einmal geschnitten wird, idealer-
weise direkt vor der Auflengrenze des Wirbelkorpers.

In einer Evaluierung konnte ein durchschnittlicher DSC von 81,88%
ermittelt werden (71,64% - 86,69%). Die rechenaufwendigsten Para-
metereinstellungen hatten eine Terminierungszeit von 19,1 Sekunden
zur Folge (2,1 GHz, 4 GB RAM).

II

Acknowledgements

First, I like to take this opportunity to thank Prof. Dr. Bernd Freisleben
and Dr. Dr. Jan Egger for the trust they placed in me and for their great
supervision. I am especially grateful that my questions were always answered
so promptly and that they showed so much interest in my work, which was
a great encouragement to me.

Parts of this thesis were written at the Dept. of Radiology of Brigham
And Women’s Hospital of the Harvard Medical School, where I was intro-
duced to many great scientists and where I was given the opportunity to
make use of the excellent research facilities at the Surgical Planning Labora-
tory. I would like to thank Drs. Jan Egger and Tina Kapur for the invitation
and the warm welcome as well as their great support throughout my stay in
Boston.

Last but not least, I would like to thank my family and friends. I am
especially indebted to my parents and my brother for their ever-lasting en-
couragement and on-going support.

Robert Schwarzenberg

I1I

Contents

Introduction

Medical Background
2.1 Vertebral Bodies in MR Images
2.2 Potential Fields of Application

MeVisLab

Preliminaries

4.1 Dice Similarity Coefficient

4.2 Graphs
4.2.1 Simple Graphs
422 Paths
4.2.3 Connectedness.
424 Cuts

4.3 Networks and Flows
4.3.1 Flow Networks
4.3.2 Residual Networks
4.3.3 Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Algorithms

5.1 Ford-Fulkerson Algorithm

5.2 Goldberg-Tarjan Algorithm
5.2.1 New Features
5.2.2 The Algorithm

5.3 Boykov-Kolmogorov Algorithm

5.4 Experimental Comparison

CubeCut: Vertebral Body Segmentation

6.1 Abstract Overview,
6.1.1 Labeling
6.1.2 Penalties
6.1.3 Return Value
6.1.4 Object and Background Separation

6.2 The Voxel Subset
6.2.1 Cubic Distribution

6.3 Implementation of Penalties and Labeling

IV

Qo

o aa w »

6.4 Z-Edges: Onetime Cut per Ray
6.5 O-links: Marking the Outer Boundaries
6.5.1 Frames of Reference
6.5.2 Capacities
6.6 Adverse Effects on the Segmentation Result
6.7 Loading the s-Capacities
6.8 XY-edges: Imposing a Smoothness Constraint
6.8.1 Implementation

Evaluation
7.1 Results
7.2 Discussion

Conclusion
Publication
CubeCut Network
Parameter Settings

Eigenstandigkeitserklarung

45
45
46

49

54

56

58

60

1 Introduction

In this thesis, a new graph-based vertebral body segmentation approach is
presented. In the first chapter Medical Background, the relative appearance
of vertebral bodies in MRI data is discussed, thereby introducing the reader
to the underlying framework conditions for vertebral segmentation. Further-
more, the section also deals with selected diseases of the spine that require
a preoperative evaluation of a surgical patient’s MR image(s). Hereby, the
reader is introduced to potential fields of application of the new approach.

In this thesis, there will be an emphasis on time complexity since au-
tomatic vertebral body segmentation aims to decrease the time physicians
spend on the preoperative evaluation of surgical patients. After the reader
has been introduced to underlying mathematical concepts such as graphs and
flow networks, external subroutines that the new algorithm deploys are pre-
sented, concluding with a discussion about their theoretical and experimental
running times.

A C++ implementation of the novel approach was tested within the med-
ical image processing platform MeVisLab [1]. The main features of the plat-
form are presented in the section MeVisLab and the results of the evaluation
are listed and discussed in the concluding paragraphs of this thesis. A de-
tailed presentation of the actual algorithm can be found in the section Cube-
Cut which also exemplifies how the new approach tackles typical problems
in the field of vertebra segmentation.

2 Medical Background

The following section introduces the reader to the relative appearance of
vertebral bodies in MR images'. Furthermore, the last paragraphs are con-
cerned with selected diseases of the spine as well as corresponding preoper-
ative measures, introducing the reader to potential fields of application of
vertebral body segmentation.

2.1 Vertebral Bodies in MR Images

Several features of the spinal anatomy can be distinguished by their different
grey values in an MR image. In most T1 and T2-weighted image slices, nor-
mal adult vertebral body bone marrow can be differentiated from the outer
boundaries of the vertebral body by a homogeneously lighter grey value [2].
This is because the outer, compact cortical bone, which coats the vertebral
body, results in a much darker color/lower grey value than the cancellous,
spongy inner part.

Q

(f sed rib elemam) Vertebral
arch

Vertebral

Pedicle body

Lamina

Spinous process

()

Figure 1: Vertebral anatomy. (a) illustrates the anatomy of a vertebra from a
coronal view (adopted from [3]). (b) shows a sagittal T2-weighted MRI slice
(for coronal and sagittal see Figure 5). The green arrow in the enlargement
points to an area inside the vertebral body whereas the red arrow points to
the cortical bone, the outer boundary.

'For a thorough explanation of the physics and concepts of MR imaging, the reader is
referred elsewhere.

Thus, the grey-value difference between a voxel in the vertebral body
and a voxel on the outer boundaries (e.g. cortical bone) is higher than the
difference between two voxels inside the vertebral body. This, however, does
not apply to slices that depict the pedicles.

Figure 1 clearly shows that the pedicles of the vertebral arch are not con-
sidered part of the vertebral body. Nevertheless, since they are connected to
the vertebral body, they belong to its outer boundaries. However, unlike the
cortical bone, they define a weak, homogeneous object-background transition
region.

Furthermore, in Figure 2 (a), instead of the cortical bone, the cere-
brospinal fluid (CSF, surrounding the red arrow), which causes the high grey
value of the spinal canal in T2-weighted images [2], defines parts of the outer
boundary of the vertebral body. This is due to noise and signal distortion
which results in an overlapping.

One can therefore conclude that because of signal distortion and noise,
anatomical structures like the pedicles as well as occasional voxel outliers,
the vertebral body cannot be defined by sharp boundaries in all MR image
slices?.

(a)

Figure 2: Object-background transition regions (red arrows). (a) shows a
homogenous object-background transition. In (b), the spinal canal (CSF)
makes up parts of the vertebral body’s outer boundaries.

2In what follows, the outer boundaries are classed with the background voxels.

2.2 Potential Fields of Application

Lumbar stenosis (LS), a narrowing of any part of the lumbar spinal canal
with encroachment on the neural structures by surrounding bone and soft
tissue [4, 5], is the most frequent reason for surgery in patients over 65 years
of age [4]. While MR imaging is considered particularly purposive for the
visualization of the soft tissue, X-ray computer tomography (CT) is seen as
the method of choice for evaluating bone anatomy [4]. CT, however, exposes
the patient to carcinogenic radiation while the magnetic field in MR imaging
is harmless.

Sometimes, degenerative spondylolisthesis, an asymptomatic slipping for-
ward of one lumbar vertebra on another with an intact neural arch, can be
linked to LS [5]. Similar to LS, degenerative spondylolisthesis primarily oc-
curs in elderly patients and a combination of MRI and CT is also applied
for preoperative evaluations in this case. Note that a shift towards a more
frequent application of MRI, even for morphological evaluations of the bone
structure, would result in less radiation exposure [6].

Figure 3: T2-weighted MR image showing a degenerative spondylolisthesis
(red arrow) and a lumbar stenosis (green arrow).

3 MeVisLab

MeVisLab? is a platform allowing medical image processing and visualiza-
tion. It provides basic and advanced algorithms as well as an interface for
new C+-+ implementations.

Networks The platform is based on a modular pipelining principle and
offers a GUI that allows the user to intuitively assemble a network of existing
C++ modules, connecting them by “pipes”. The first layer of such a network
is typically a module that loads a medical image, e.g. ImagelLoad, in the .dcm
or .tif format, for instance (see Figure 4). ImageLoad provides an output field
through which it propagates subimages of the loaded image towards an image
input field of a connected module (e.g. simpleAdd in Figure 4).

ImageloadOutput simpleAddOutput
ViewzD ViewZD

A Aaaa A A& aa

Panel View2D(Imagel oadOutput]
g p

¥
simpleAdd

A

A7
ImageLoad

Figure 4: Screenshot of an example network in the MeVisLab workspace.
ImageLoad loads an image and propagates it towards the image input
fields (triangular-shaped) of modules in the next layer (here: View2D and
simpleAdd). The View2D panels on the right and the left side visualize 2D
slices of the input image. simpleAdd adds 300 to each voxel value of the
input image (see Listing 1 and panel on the right side).

3The section at hand is solely based on the MeVisLab reference manual [1].

Image Processing Concepts It is up to the developer of a new ML
(MevisLab) module to decide on an image access strategy. MeVisLab sup-
ports paging, analogously to the concept of paging in memory management,
as well as global image access.

The page-based concepts, such as the random accessing of voxels, should
be applied if only local changes or information are needed. For algorithms
that have to access the close environment of a voxel, MeVisLab provides a
module that supports the so-called kernel-based approach which allows for a
defined range around a given voxel to be addressed. A next possible step is
the simultaneous loading of a complete image. In terms of memory manage-
ment efficiency, the page-based approaches are most efficient while the full
image loading is most costly.

Coordinate Systems A module providing an image input field, accept-
ing the output of ImageLoad, for example, can address a position in the image
using world coordinates as well as voxel coordinates. The voxel coordinates
are continuous [0...z,0...y,0...z], dependent on voxel spacing and they are
often non-isotropic, which means that the voxels have different properties in
different directions/perspectives. World coordinates on the other hand, mea-
sure distances and angles of one or more objects from a global perspective. It
is possible to map voxel coordinates onto world coordinates (and reverse) by
applying affine transformations (translation, rotation, scaling and shearing).
The required orientation matrix is included in the image data.

(0

0

Figure 5: Mapping of voxel coordinates onto world coordinates. In medical
imaging, the body planes on the right side (depiction adopted from [1]) serve
as reference frames: S for sagittal, C for coronal and A for azial.

Example implementation The simpleAdd module in Figure 4 does
not belong to the standard library. It has been developed using a “project
wizard” that is part of the developing environment of MeVisLab. The wizard
automatically generates an interface which can be enhanced by the developer.
Part of the interface is the method calculateOutputSubimage (see Listing
1) that allows a page-based/voxel-based access of the input image as well as
a page-based /voxel-based computing of the output image.

Listing 1 is an exact copy of the auto-generated method except for line
38 where an addend (300) has been appended. Line 38 results in a lightening
of the image as can be seen in Figure 4. Without the extension, the module
would simply pass the input image.

Listing 1: Page-based/voxel-based approach

1 /= mm oo m oo oo
2 //! Template for type specific page calculation. Called by

3 //! ML_CALCULATEOUTPUTSUBIMAGE_NUM_INPUTS_1_CPP(simpleAdd);

4 /) mm oo —————-----
5 template <typename T>

6 void simpleAdd::calculateOutputSubImage (TSubImage<T>* outputSubImage,

7 int outputIndex,

8 TSubImage <T>* inputSubImageO

9)

10 {

11 ML_TRACE_IN("template_ <typename_ T>, simpleAdd::calculateOutputSubImage()");

13 // Compute subimage of output image outputIndez from input subimages.

14

15 //Clamp boz of output image against image extent to avoid that unused areas are processed.
16

17 const SubImageBox validOutBox = outputSubImage->getValidRegion();

18

19 // Process all vozels of the wvalid region of the output page.
20 ImageVector p;
21 for (p.u=validOutBox.vl.u; p.u<=validOutBox.v2.u; ++p.u) {

22 for (p.t=validOutBox.vl.t; p.t<=validOutBox.v2.t; ++p.t) {

23 for (p.c=validOutBox.vl.c; p.c<=validOutBox.v2.c; ++p.c) {
24 for (p.z=validOutBox.vl.z; p.z<=validOutBox.v2.z; ++p.z) {
25 for (p.y=validOutBox.vl.y; p.y<=validOutBox.v2.y; ++p.y) {
26

27 p.x = validOutBox.vl.x;

28 // Get pointers to row starts of input and output subimages.
29 const T* inVoxelO = inputSubImageO->getImagePointer(p);
30

31 T* outVoxel = outputSubImage->getImagePointer(p);

32

33 const MLint rowEnd = validOutBox.v2.x;

34

35 // Process all row vozels.

36 for (; p.x <= rowEnd; ++p.x, ++outVoxel, ++inVoxelO)

37 {

38 *outVoxel = *inVoxelO + 300;

39

40 }

41 }

42 ¥

43 ¥

44 ¥

45 }

4 Preliminaries

4.1 Dice Similarity Coefficient

The Dice Similarity Coefficient (DSC) has been demonstrated to be an ad-
equate indicator of medical image segmentation accuracy [7]. Consequently,
it can also be used to detect failed segmentations [8]. It is defined as two
times the cardinality of the intersection of a set A and a set B divided by
the sum of the sets’ cardinalities [9]:

2/(ANB)|
Al +|B]

Thus, if the the DSC equals one, A equals B. A DSC equaling zero
implies that A and B are disjoint. However, the DSC only takes the amount
of overlaps into account, which is why it does not always allow us to make
reliable predictions about the segmentation result’s shape and/or position.
Therefore, it can not be thought of as an absolute measure of segmentation
accuracy.

(a) (b) ()

Figure 6: Three segmentation results (set A, red shapes), objects (set B,
grey shapes) and background (white). The resulting segmentation in (a)
maintained shape and size of the original object but the center has been
transformed. The segmentation result in (b) has the same center and shape
as the original object but it is different in size. (c) shows a segmentation
which did not maintain the shape of the original object but shares its center.
Even though the differences between the DSCs in (a)-(c) are negligible, it
has still to be decided which of the above segmentations can be considered
successful.

4.2 Graphs
A graph G * is an ordered triple (V(GQ), E(G),v¢q). V(G) and E(G) are sets

of vertices and edges and
Vet E(G) = V(G) x V(G)
is an incidence function [11, 12]. 1¢ can also be defined by the two functions
o,t: E(G) = V(QG)

by
val(e) == (o(e), t(e)), e € E(G)
[12]. With the order reversed, 1) also defines o and ¢ by

(o(e), t(e)) == vale)

[12]. o(e) is referred to as the origin of e, whereas t(e) refers to the tail of e
[12]. If v € V(G) and o(e) = v or t(e) = v, then v and e are incident, as well
as e,¢ € FE(Q), if e and € share a vertex [12]. Two vertices v,v" € V(G)
are adjacent if they are both incident with an edge e [11]. A loopless graph
is one that has no edge e with o(e) = t(e) [12]. If v(G) and e(G) denote
the number of the graph’s vertices and edges, v(G) then is referred to as its
order, while e(G) describes its size [11]. G is finite, if v(G), e(G) < oo [11].

4.2.1 Simple Graphs

A graph G = (V(G), E(G),1¢) is called simple if 1 is injective [12]. Thus,
for all v,v" € V(G) at most one edge (v,v’) can be assumed. If 9 is not
injective, G is called a multi graph [12]. If G is simple, then F(G) can be
regarded as a subset of V(G) x V(G), which allows one to denote ¢ (E(G))
by E(G) since now 1g(e) # va(e) if e # ¢ for all e,e¢’ € E(G) [12].

4In the subject literature, there are several slightly different definitions of graphs and
the key terms associated with them. For instance, Dieter Jungnickel describes a graph as
“an ordered pair (V, E) consisting of a finite set V # () and a set E of two-element subsets
of V”[10]. Thus, this definition excludes multi graphs, while others do not. Taking several
sources into account in this chapter, a holistic approach is presented because it seems to
be the most convenient for the further discussions.

Consequently, from now on, if a simple graph G is discussed, (v,v") denotes
the edge e with 1g(e) = (v,v") and one can simply write G' = (V(G), E(G))

[12].
€o @ . eo @
o OSANO ()
@) =)

(a) (b)

Figure 7: A multi graph (a) and a loopless, simple graph (b).?

Simple directed graphs

A simple, directed graph is an ordered pair (V(G), E(G)) where
E(G) CV(G) x V(G)
(see Figure 7(b))[12].

Simple undirected graphs

A simple, undirected graph is a simple, directed graph (F(G),V(G)) which
meets the following condition:

(v,0) € E(G) & (v',v) € E(G)
(see Figure 8(a))[12].

4.2.2 Paths
Let G = (V(G), E(G),%¢) be a graph. A path P with

P = vp, en, Uhgt1, €hits ooy €51, Vj

SThere are multiple ways to represent a graph correctly [11]. In general, the (relative)
positioning of the vertices is arbitrary. Adjacent vertices are connected by arrows. In the
case of an undirected graph, one usually draws an arc instead of two arrows (see Figure
8(a)). Here again, the shapes of the arcs and arrows are normally meaningless.

10

is an alternating (except in the case of a cyclic path) array of vertices v; €
V(G) and edges e; € E(G), where ¢g(e;) = (vi,vi41) for b < i < j [13].
In the case of a simple graph G, P can be characterized by an array of just
vertices: v, ...,v; [13]. P then is said to be simple [13].

4.2.3 Connectedness

Let G = (V(G), E(G),v¢¢) be a graph. vy, v; € V(G) are connected if there
exists a path P = vy, ey, ...,€j_1,v; [13]. Furthermore, by convention, there
is always a connection from vy to v, [13]. If G is a simple, directed graph
and if for all vj,v; € V(G) there exists a path P from vy, to v; or from v;
to vy, then G is connected [14]. Otherwise it is disconnected. G is strongly
connected if for all v, v; € V(G) there exists a path from v, to v; and a path
from v; to vy, [14].

® O | [
OINOIRIOIOOINOO
g & | [ey

(a) (b) (c)

Figure 8: A strongly connected, undirected graph (a), a disconnected graph
(b), and a connected graph (c). A path vs, vy, v4 is marked in red.

4.2.4 Cuts

Let G = (V(G), E(G)) be a simple, directed graph. If C = (V,V) is a
partition of V(G), so that VUV = V(G) and V NV =), then

{e € E(G)|(o(e) e V Ate) €V)V (te) €V Ao(e) € V)}

is a cut-set and C is a cut [15].

11

Figure 9: A graph-cut C' = ({vg, v1, v2,v4, 06}, {v3,v5}) and the correspond-
ing cut-set {(v1,v3), (v1,vs), (v3,04), (vg,v5)}.

4.3 Networks and Flows
4.3.1 Flow Networks

A network N = (G, ¢, s,t) consists of a finite, simple, loopless, directed, and
connected graph G = (V(G),E(G)) and a capacity function

C: E(G) — Rzo,

which assigns a non-negative real number to each edge in the edge set[16, 17].
If (v,v") ¢ E(G), one assumes that c(v,v) = 0 [16]. Furthermore, a network
consists of (at least) 9 two distinguished vertices s and ¢, the source and the
sink. A flow is a real-valued function

f:V(G) xV(G) = R,
that satisfies the given conditions:

Capacity constraint : Yv,v € V(G) : f(v,v/) < c(v,v/),

6Henceforth a single-source, single-sink network is assumed and, for convenience, it is
implied that all vertices lie on a path s, ..., t.

12

/

Skew symmetry: Yov,v € V(G) : f(v,v/) =—f(v,v),

Flow conservation : Yv € V(G)\{s,t} : Z flv,0)
v eV(Q)

16, 17).

The capacity constraint simply limits the flow from one vertex to another
to a value less than or equal to the capacity of the common edge. The
skew symmetry determines that the two-way flow between two vertices equals
zero. The flow conservation equation says that none of the intermediate
vertices, that is all vertices except for the source and the sink, “create” or
“absorb” flow. Observe that if neither (v,v") € E(G) nor (v',v) € E(G),
then f(v,v') =0 and f(v',v) = 0 (because c(v,v') = 0 and c(v',v) = 0).

Only considering the total positive flow entering and leaving an interme-
diate vertex v € V(G)\{s,t}, due to the conservation property, it becomes
apparent that the “flow in equals the flow out:”

Z f(',v) Z f(v,0") (1)
v ev(G) v V(@)

f(v/,v)>0 f(v,v/)>0

[16]. Thus, here again, no flow gets “lost” or “accumulates” in the interme-
diate vertices.

The value of a flow f, denoted by w(f), is the total net flow at the source
[16, 10]. The total net flow at any vertex is defined as the positive flow in
minus the positive flow out [16]. Note that because of (1), the total net flow
at the sink equals —w(f).

4.3.2 Residual Networks

Ny = (V(G), Ef(G)),cy, s,t) is the residual network of a network N =
(V(G), E(G),c,s,t)) and a flow f if

Ef(G) = {(v,v) € V(G) x V(G)|es(v,v) > 0}
and
cp(v,v) = c(v,v) — f(v,v)
[16]. Note that cs(-) is always positive for all edges in the residual network
16].

13

(b)

Figure 10: A flow network (a) and the induced residual network(b). High-
lighted in bold are the edges which are actually in the set of edges. They are
labeled with the positive flow/capacity ratio. (b) shows the induced residual
network of (a).

4.3.3 Max-Flow Min-Cut Theorem

Given a network N, an s-t-cut is a cut C' = (S,T), so that s € Sand t € T'.
The capacity |C| of such an s-t-cut is the sum of the capacities of all forward
arcs, that is all edges e = (v,v") € E(G) for which o(e) € S and t(e) € T

(S, T) = > ev)
(v,)EE(G)
v/ES
v €T
[18]. If for an s-t-cut Ci,;p, there exists no other s-t-cut C” so that |C'| <
|Conin|, then Chiy is a minimal cut [19].

In 1962 L. R. Ford and D. R. Fulkerson stated and proved that “for any
network the maximal flow value from s to t is equal to the minimal cut
capacity of all cuts separating s and t” [17]. Thus, w(f) is of maximal value,
if and only if the flow at the forward arcs in the cut-set of any minimal
cut equals these arcs’ capacities. Consequently, given a maximal flow fx*, a
minimal s-t-cut can be found if one tags all edges at which the flow equals
the capacity and then identifies an s-t-cut C,,;,, whose cut-set only contains
tagged edges and where w(f*) = |Chuinl.

14

5 Max-Flow Min-Cut Algorithms

5.1 Ford-Fulkerson Algorithm

The maximum flow fx in a network N can be determined by the Ford-
Fulkerson algorithm. The algorithm works with augmenting paths. An aug-
menting path is a path from s to ¢ in the residual network Ny [16]. By
definition, all edges (v,v') € Ef(G) are induced by those edges in E(G)
at which c(v,v") > f(v,v") (compare Ch. 4.3.2) and thus, if there ex-
ists a path P = s,...,t in Ny, the flow along P can be augmented by
min{cs(v,v)|(v,v") € P}, without violating the capacity constraint [16].

The Ford-Fulkerson algorithm repeatedly searches for an augmenting
path; if the search is successful, it then maximizes the flow as described
above. When no path from s to ¢ can be found in Ny (anymore), then w(f)
is of maximal value [17].

void FF()
V(v,v)eN
f(v,v/) +~0
f(v/,v) +0
N¢ < residual()
while (3P =s,...,t in Ng)
cs(P) « min{cg(v,v)|(v,v) € P}
V(v,v)eP
f(v,v) « £(v,v) 4 c¢(P)
f(v,v) « —f(v,v)
10 N¢ < residual()

© 00 N O U ke W NN = O

Figure 11: Pseudo code of the Ford-Fulkerson algorithm. The algorithm
mutates a flow f. It is assumed that f and the network N are fields in the
global scope. residual returns the residual network Ny, induced by N and f.

15

The running time of the Ford-Fulkerson algorithm depends on the search
strategy used to find an augmenting path (line 5). The shortest path can
be found by deploying a breadth-first search. If the search is taken out of
the calculation and if ¢ : E(G) — N can be assumed, the algorithm then
terminates in time O(e(G)|Ciinl), for lines 1 — 3 take e(G) steps while the
condition in line 5 becomes false after at most |C,,| steps [16]. Figure 12
illustrates the Ford-Fulkerson algorithm starting at line 5 in the pseudo code
(see Figure 11).

16

2/3 2/2

2/3 1/1

(e) ()

Figure 12: Tllustration of the Ford-Fulkerson algorithm. (a)-(e) show the
residual networks resulting from the computations in line 4 ((a)) and line 10
((b)-(e)) (see Figure 11). (f) shows the resulting network and the minimal
cut (red) after termination.

5.2 Goldberg-Tarjan Algorithm

Until 1988, the year that A.V. Goldberg and R.E. Tarjan introduced a new
approach to solve the maximum flow problem, all previous, efficient algo-
rithms worked with augmenting paths, adopting Ford and Fulkerson’s idea
as described above [20]. As a matter of fact, today, one can link most of the
algorithms to either the Ford-Fulkerson algorithm or to the Goldberg-Tarjan
algorithm (also referred to as push-relabel), which is why they are considered
standard algorithms in this field [21].

The following paragraphs outline the push-relabel approach as described
in A.V. Goldberg’s and R.E. Tarjan’s 1988 paper “A new approach to the
maximum-flow problem,” which also provides a detailed proof of correctness
[20]. However, before discussing the algorithm, a few new features have to
be introduced.

5.2.1 New Features

Given a Network N and a flow f, the Goldberg-Tarjan algorithm can in-
termediately violate the flow conservation constraint by allowing vertices to

17

accumulate flow so that

Vo e V(Q) : Z fo(v',v) > Z fo(v,0).

vIGV(G’) v GV (@)
o0 0)>0 Fpw")>0

This is because the algorithm first generates a so-called preflow f,, which
satisfies the capacity constraint and the skew symmetry as well as a third
invariant, which determines that the preflow out must not exceed the preflow
in:

Nonnegativity —constraint : W' € V(G)\{s} : Z fp(v,0")
veV (G

On the other hand, if the preflow into a vertex v € V(G) exceeds the
preflow out of it, the nonnegativity constraint will hold true. In this case,
v accumulates preflow units and due to the skew symmetry constraint, the
resulting ezcess e,(+) can simply be described by the total preflow into v:

Z fp(v',v).

v'eV(G)

Observe that the nonnegativity constraint is a weakening of the flow conser-
vation constraint and that if

Vo € V(G)\{s,t} : e.(v) =0,

then f, is a flow.

5 3
) -3

Figure 13: Illustration of a positive flow excess: e, (v1) = 2.

The authors also introduced a function
[:V(G) = Ny U{oo},

18

where [(s)(= |[V(G)|) and I(t)(= 0) are constants and for which the following
invariant always holds true:

Y(v,v") € Ep (G) : l(v) < 1(v') + 1.

Furthermore, for all vertices other than the source or the sink, [is defined
dynamically during runtime in such a way that at any time [(v) is to be
interpreted in the following manner:

e [(v) < I(s) means that [(v) is a lower bound of the length of the shortest
path P =wv,....,t and

e [(v) > I(s) means that [(v) — [(s) is a lower bound of the length of the
shortest path P =wv, ..., s.

Thus, [allows us to estimate the distance from a vertex to the source or to
the sink. In the following, a vertex v € V(G)\{s,t} is said to be active if
l(v) < oo and if e,(v) > 0. There are two basic operations the algorithm
repeatedly applies if the respective invariants hold:

o If v is active and if (v,v") € E, (G) and if I[(v) = [(v) + 1, then a
push is allowed which means that the preflow on (v,v’) is 1ncreased by

§ = min{e,(v), cs(v,v")}.

e If v is active and if Vo' € V(G) : (v,v') € Ef,(G) = I(v) < [(v'), then
a relabeling is allowed, which means that min{l(v') + 1|(v,?") € Ey,}
is assigned to I(v) if {(v,v)|(v,v") € Ey} # 0 and oo is assigned
otherwise.

Observe that a push is only allowed “downwards” from a higher [-level
towards a lower level. Furthermore, note that by pushing, e,(v) is decreased
by §, while e, (v') is increased proportionally and that the capacity constraint
is never violated. Moreover, due to skew symmetry, which a preflow satisfies
by definition, the preflow on (v’,v) has to be decreased by 0 at the same
time. Thus, after a push, the excess of v has been propagated towards v’.

A relabeling or “lifting” is allowed if the excess of an active vertex v
cannot be pushed. After “lifting” v, a push is possible again.

19

5.2.2 The Algorithm

During an initialization phase, the algorithm increases the flow on all resid-
ual edges (s,v) € Ey, (G) to their capacity. Thus, after preprocessing, all
adjacent vertices of the source s are active. The algorithm then tries to
propagate these excesses forward towards the sink ¢. In order to achieve this,
it repeatedly examines the set of active vertices (in the following V(G)aet)
and the set of residual edges.

If there exists a vertex v € V/(G),¢ and a residual edge (v,v') € £y, (G),
where v’ is closer bound to ¢, the algorithm then pushes v’s excess towards
v’. Note that if ¢;(v,v") < e;(v), then only a fraction of the excess can be
pushed. The rest remains and thus, v stays active.

However, after initialization, {(v) = 0 for all vertices except for the source
so that no excess is allowed to be pushed, yet. If the set of active vertices
is not empty but a push of excesses is not allowed (because there exists no
“Inclining,” residual edge), the active vertices are then “lifted” or relabeled.
After relabeling, a push is (again) possible.

The algorithm repeats this procedure of pushing and relabeling until even-
tually the maximum amount of preflow, restricted by the capacity constraint,
reaches the sink. In order to convert the preflow into a flow, the algorithm
now propagates any remaining excesses back towards the source. To do so, it
deploys the same procedure as before. It terminates when no active vertices
are left.

0 bool push()
1 if IVeV(Gact and if 3I(v,v)eEg(G) and if 1v)=1v)+1
2 § < min{ex(v), c¢(v,v')}

fo(v,v') (v, V) + 4

fo(v/,v) + £5(

ex(v) « ex(v)

3

4 viv) =94
5

6 ex(v) + ex(v) +
7

8

—0
1)
return true

return false

20

0 bool relabel()

1 if IveV(Glag and if W eV(G):(v,Vv')eEg(G)=1(v) <1(V)
> if {(vV)I(v.V) € B, (G)} £ 0
3 1(v) < min{d(v') + 1|{(v,V) € Eg,(G)}
4 return true

5 else

6 l(v) < o0

7 return true

8 return false

0 woid push —relabel()

1 VY(v,v) € V(G) x V(G)

2 fr(v,v) <0

3 VWweV(G)

4 fo(s,v) < c(s,v)

5 fo(v,s) < —c(v,s)

6 ex(v) « fp(s,v)

6 l(v) «<0

1 1(s) < V(@)

7 V(G)act < activeSet()

8 Ng, < residual()

9 if push() or relabel()

10 goto 7

Figure 14: Pseudo code of the generic push-relabel algorithm. Generic points
to the fact that the active vertices and residual edges are consulted in an
arbitrary order. residual returns the residual network Ny , induced by the
network N and the preflow f,. activeSet determines the subset of active
vertices in V(G) and returns it. The main method begins by initializing the
preflow f,, the distance mapping [and excess mapping e,. It is assumed that
all variables mentioned above lie in the global scope of the program.

21

The generic algorithm terminates after at most O(v(G)?).
By using dynamic tree-structures, the runtime can be improved to

O(v(G)e(G) log(v(G)?/e(@))).

o~
—
<
~—
o~
—
<
~—

SO— = — N — W —
/.

SO— = — N — W —
e
S

D
!
&

<

/ﬁ/ by

o~
—~
<
~—
o~
—
4
~—

(=)
T
(S)

(=)
?/

O— = — N — W —
A
=}

O— = — N — W —

—® \9

() (d)

O active ~ > push not allowed

Oinactive 4 push allowed

Figure 15: Illustration of the Goldberg-Tarjan algorithm. (a) shows a net-
work N. (b) shows the residual network Ny after the initialization phase.
(c) shows Ny, after v has been relabeled and e, (vo) has been pushed towards
t. (d) shows the residual network after termination.

22

5.3 Boykov-Kolmogorov Algorithm

In 2004, Y. Boykov and V. Kolmogorov presented a min-cut/max-flow al-
gorithm that frequently outperformed efficient standard algorithms in image
processing (compare Ch. 5.4)[21] . Interestingly, the theoretical time com-
plexity of the new approach is worse than that of the algorithms with which
it was compared. Adopting the ideas of Ford /Fulkerson, the algorithm makes
use of augmenting paths:

Given a flow network N, the algorithm generates two non-overlapping
trees (S and T'), one of which has the source as its root (S) and another
one which expands from the sink (7"). Vertices that are not part of either of
the two trees are referred to as free. A vertex in a tree’s collection is either
said to be active or passive, depending on whether or not all of its neighbors
have been explored. A vertex explores its neighborhood by adopting all ad-
jacent, free vertices with which it is connected via an incident, residual edge.
Thus, the outer border of a tree consists of a set of active vertices that allow
exploration and expansion, while the internal, passive vertices have already
explored their neighborhood.

The acquiring of free, adjacent vertices (expansion of the trees) takes
place when the algorithm is in the growth stage. Note that in the course of
the expansion, some of the active vertices might become passive. The trees
expand until one of their active vertices identifies a residual edge which con-
nects it to the outer border of the other tree. In this case, an augmenting
path has been detected.

Now, the algorithm enters the augmenting stage in which it augments
the flow along the detected path. Afterwards, saturated edges are deleted
from the lists of the two trees and as a consequence, some incident vertices
might be disconnected. The authors refer to the disconnected vertices as
orphans. It should also be noted that the deletion of the saturated edges
and the expelling of the disconnected vertices may break up the trees into
disjoint unions.

To rebuild joint unions, the algorithm now enters the adoption stage in
which it tries to reconnect the orphans (and their children) to the tree to
which they they belong. On this, it tries to find residual edges that connect
active vertices with the orphans. All of the orphans that are not incident
to such a residual edge are then declared free again and their children are
declared orphans. The adoption stage is completed when there are no or-

"This section is based solely on [21].

23

phans left.

The algorithm repeats the three stages until the sets of active vertices are
empty and the trees are disjoint. After termination, the flow is a maximal
flow since the trees are separated by saturated edges which form a minimal
cut.

Thus, one can conclude that the algorithm’s good performance results
from its search strategy: Instead of searching for a shortest augmenting path
every new iteration by a breadth first search, the algorithm reuses the trees
that are already set up.

@-% 0010
(@)
@)

(b)

—
o
~

(d)

Figure 16: Illustration of the Boykov-Kolmogorov algorithm. (a) - (d) show
residual networks at different stages of the algorithm. Red arcs and ver-
tices belong to S while green arcs and vertices belong to 7. Black edges
haven’t been explored, yet. (a) residual network after growth stage, (b) after
augmenting stage, (c) after adoption stage, (d) after termination.

Figure 17 shows the pseudo code of the algorithm.
tree : V(G) — {S,T,0}

is a function which maps a vertex to either one of the search trees S or T,
or to (), if the vertex is free. If tree(v) #), then v’s parent is determined by
parent(v).

neighbor(v) = {v'|(v,v") € E;}

24

is a set of all adjacent, free vertices v' € V(G), that share a common, non-
saturated edge with v. A is a list of the active vertices, O is a list of the
orphans. Boykov and Kolmogorov proved that in the worst case, the algo-
rithm terminates in time O(e(G)v(G)?|Chinl)-

0 bool BK()

1 S« {s}

2 T« {t}

3 A<+ {s,t}

4 0«0

5 while true

6 P < grow()
7 if P==

7 return
9 augment(P)
10 adopt|()

0 P grow()

1 while IveA

2 Vv’ € neighbor(v)

3 if tree(v') ==10

4 tree(v') < tree(v)
5 parent(v') < v

6 A+~ Au{v'}

7 if tree(v')#(and tree(v) # tree(v')
8 return Ps ¢

9 A — A\{v}

10 return 0

25

void augment(P)
augmentPath(P)
V(v,v) e P
if cg(v,v')==1£(v,Vv)
if tree(v)==tree(v')==S
parent(v’) < ()
O« OuU{Vv}
if tree(v)==tree(v')==T
parent(v) « ()
O+~ 0uU{v}

0 N Tt O e W Ny = O

0 woid adopt()
1 while FIveO
2 O+ O\{v}
3

process(v)

Figure 17: Pseudo code of the max-flow algorithm by Boykov and Kol-
mogorov. augmentPath augments the flow along a path P. process(v) tries
to find a valid parent for a vertex v. A valid parent v" belongs to the same
tree as v (S or T') and is connected to it via a non-saturated edge. If a new
parent is found, parent(v) is updated. Otherwise neighbor(v) is consulted
and all vertices of the same root as v are added to the active set A and all of
v's children v" € neighborhood(v) are added to O, then parent(v’) is updated.
Furthermore, process(v) then declares v free in a last step.

5.4 Experimental Comparison

Boykov and Kolmogorov compared the runtime of their algorithm with pre-
vious augmenting path and push-relabel style implementations [21]. The al-
gorithms found minimal s-t-cuts in two-terminal networks consisting of (3D)

26

regular grid graphs with Ny and Ny neighborhood systems.

In addition to (theoretically) less efficient approaches, an augmenting
path-based algorithm, discovered by E. A. Dinic in 1970 [22] and a push-
relabel algorithm, a fine tuned version of the Goldberg-Tarjan algorithm
[20], were tested. The worst case complexities are listed in Table 1 and the
experimental running times (1.4 GHz Pentium IV) can be found in tables 2
and 3 [21].

Table 1: Worst case complexities for the tested augmenting path (ap) based
and push-relabel (pr) style algorithms [21].

algorithm style worst case complexity
Dinic ap O(v(G)?%e(@))
Goldberg-Tarjan pr O(w(G)*\/e(@))
Boykov-Kolmogorov ap O(v(G)?e(G)|Chinl)

Table 2: Running times (127 x 127 x 12 vertices) [21].

algorithm runtime/seconds (Ng) runtime/seconds (Nag)
Dinic 20.16 39.13
Goldberg-Tarjan 1.38 2.44
Boykov-Kolmogorov 0.7 2.44

Table 3: Running times (76 x 399 x 38 vertices) [21].

algorithm runtime/seconds (Ng) runtime/seconds (Nyg)
Dinic 172.41 443.88
Goldberg-Tarjan 18.19 47.99
Boykov-Kolmogorov 13.22 90.64

Conclusion The results suggest that despite its theoretical worst case
complexity, the Boykov-Kolmogorov algorithm is most efficient when it comes
to the mincut computation in s-t-networks of low complexity, e.g. up to Ng
neighborhood systems.

27

6 CubeCut: Vertebral Body Segmentation

The new vertebral body segmentation algorithm presented here will be re-
ferred to as CubeCut. CubeCut extends a two-dimensional approach, previ-
ously introduced by Jan Egger et al., to a third dimension [23] and is strongly
related to [24, 25, 26, 27].

The introductory paragraphs of this section first give a conceptual, ab-
stract overview of the basic features and the behaviour of CubeCut. The
introduction serves as a frame of reference for the more detailed discussion
that follows at a later stage.

6.1 Abstract Overview
6.1.1 Labeling

Given a volumetric MR image P, CubeCut first selects a subset P’ C P of
the image’s voxels and in a last step it tags each voxel p € P’ with either one
of the labels Ly or L; [21]:

t: P — {L,, L}

6.1.2 Penalties
The labeling of a voxel p € P’ involves two penalties [21]:

e D,(t(p)) € Rxg is the penalty for assigning the label ¢(p) to p and

o V,(t(p),t(p')) € Rxp is the penalty for assigning ¢(p) to p when t(p’)
is the label of the voxel p’ € P’.

D describes a voxel’s affinities to the labels L, and L;. For example, the
higher D,(t(p) = L;), the more p is affiliated with Ls;. V' on the other hand
reflects a voxel’s affiliation to another voxel. In practice, V,(t(p),t(p’))
is greater than zero only if ¢(p) # t(p’). Thus, V indirectly describes p’s
affiliation with p’ by awarding a penalty for tagging the two voxels with
different labels: The higher V, ,/, the more p is affiliated with p'.

Nevertheless, note that V, (t(p), t(p)) = 0 for ¢(p) # t(p’) does not nec-
essarily mean that the two voxels p and p’ can be tagged differently without
penalty costs. If, for instance, V,»(t(p),t(p")) > 0, for t(p) # t(p”) and
p" € P and if Vi, (t(p"),t(p')) > 0 for t(p”) # t(p'), then the penalty cost
for assigning different labels to p and p' is at least min{V, , Vv }.

28

6.1.3 Return Value

CubeCut tags the voxels in a way such that the overall penalty cost is min-
imized. The overall cost is described by (2). CubeCut thus returns the
argument L which minimizes

E(L) = Z D,(t(p)) + Z Vo (t(p), t(p")), (2)
et (iGher

where L = {t(p)|p € P’} is a labeling of the subset P’ [21, 28]. However,
until now, the features above have been discussed detached from the context
of vertebral segmentation. The next section will make the connection.

6.1.4 Object and Background Separation

CubeCut selects P' and implements D and V' (on the basis of the predeter-
mined subset P’) in a way such that the returned labeling is to be interpreted
in the following manner:

e CubeCut assumes all voxels p € P’ for which t(p) = L inside the
vertebral body and

e all voxels p € P’ for which t(p) = L; can be assumed outside the
vertebral body.

Figure 18: Mlustration of voxel labeling.

29

Hence, so far, one can conclude that in a first step CubeCut selects a
subset of voxels and on the basis of this subset, implements two penalty
functions which then determine a clustering of the subset into two disjoint
units of voxels. One unit describes the vertebral body while the other de-
scribes the background (which may include other vertebrae). The following
paragraphs will put this meta-view of the algorithm into concrete terms.

labeling CubeCut(P)
P’ < generateP’(P)
(D, V) < implementDandV (P’)

return argmin|[FE, L]

w o = O

Figure 19: Pseudo code of CubeCut.

6.2 The Voxel Subset

The voxels p € P’ are distributed along n rays that expand from a user-
defined seed point in the MR image. Each ray consists of k equidistantly
spread voxels, where for all rays, the first voxel is always the user-defined
seed point, so that |P’| = n* (k — 1) + 1. As the seed point, the number
and the length of the rays as well as the number of voxels per ray can be
determined by the user. It is assumed that each ray exceeds the vertebral
body. In the following, let p;, € P’ denote a voxel on ray r, where 1 <r <mn
and where the voxel p; is closer to the seed point (p; or p;,) than p; , if
1<i<j<k?®

6.2.1 Cubic Distribution

The rays expand in a way such that all voxels of the same layer form a cube
shape, so that if ¢ = j # 1 and m # n, then the voxels p;, and p;, lie on the
surface of one cube, which has the user-defined seed point as its center. Since

8If only one ray is being discussed, the indexing r might be omitted. Furthermore,
from now on, k will always denote the number of voxels per ray and n the number of rays.

30

there are k voxels on each ray, there are k—1 different sized cubes for which p;
is the center (see Figure 20 (b)). On a cube’s face, the voxels are distributed
equidistantly and the volumes of the cubes increase evenly. However, note
that due to the theorem of intersecting lines, the distance between two voxels
on a cube’s face is less than the distance of the corresponding voxels on a
bigger cube.

ray 1 cube faces
— /
Y,
NS

I

P3;
D2,

)

’\T
1)\
seed point p; f\

(a) (b)

A 4

.

Figure 20: Profile of two cube faces intersected by three rays (a) and a cubic
voxel subset (b).

6.3 Implementation of Penalties and Labeling

CubeCut generates a network N = ((G = (V(G), E(G))),c¢,s,t), where G
is a directed, two-terminal graph and |V(G)| = |P’| + 2. Each vertex v €
V(G)\{s,t} corresponds to exactly one voxel p € P’ and no two vertices
correspond to the same voxel. In the following, v, will denote a mapping
of the vertex v € V(G)\{s,t} onto its corresponding voxel p € P’ and p,
will describe the reverse mapping. The source s and the sink ¢ have no
counterparts in P’ and thus they are referred to as virtual nodes [23].
In E(G), there exist two types of edges [21]:

e i-links (inter-links) connect vertices v € V(G)\{s,t} with each other.
The i-links are further subdivided into z-edges and xy-edges, where z-
edges connect vertices corresponding to neighboring voxels of the same

31

ray (e.g. (vi,,V(i+1),)), while xy-edges connect vertices corresponding
to voxels of different rays (e.g. (vi,,v;,,))-

o o-links (outward-links) connect all vertices v € V(G)\{s,t} with the
source s (s-links) and the sink t (¢-links). Hence, there are two o-links
for each vertex.

’s
Wl
AN O
oy S~
[N NP S
\ N
1 AY A { \\
\ ~
@))
A}
»
AN
b N
A Y
A
AY
s)

Figure 21: Illustration of the different kinds of edges. (a) i-links: z-edges
(black), xy-edges(blue). (b) o-links: s-links(green), t-links(red). (c) whole
graph.

The capacities of the i and o-links reflect the penalty functions D and V in
the following manner [21]:

Yo € V(G)\{s,1} : e(s,0) = Dy((t(vy) = L)),
Vo € V(G)\{s, 1} : c(v, 1) = Dy((t(vp) = L)),
V(v,v") € E(G) : c(v,0") =V, (t(v,), t(v))).

P

Note that the skew symmetry constraint does not have an effect since by

convention c¢(v,v') = 0 is assumed, if (v,v") ¢ E(G) (compare Ch. 4.3.1).
After the graph has been set up, CubeCut determines a minimal s-t-cut

(S, T) by deploying the Boykov-Kolmogorov algorithm® and then it labels P’

as follows:

;. | L, ifves,
Vv, € P .t(vp)—{ L, else.

Since by definition, the capacity of a minimal s-t-cut is minimal among all
possible s-t-cuts (see Ch. 4.3.3), the labeling above minimizes (2).

9http://vision.csd.uwo.ca/code/, accessed: 07/20/2012.

32

Dy, (t(vo,) = Ls) Vi, n, (1(v0,) 7 (v1,))

T
210 /2~ \10

N\ - g
/|

(a) (b)

Figure 22: Illustration of the penalty effect. (a) shows a network without
i-links. (b) shows a network with an i-link. The red line depicts a minimal
cut.

6.4 Z-Edges: Onetime Cut per Ray

Since each ray intersects with the outer boundaries of the vertebral body
only once, a set of z-edges is introduced that ensures that each ray is exactly
cut one time by a minimal s-t-cut [29]:

A ={(vi, v,)1 <i < kAL <7 <n},

where n is the user-defined number of rays and & the total number of voxels
per ray, again'®.

The set of z-edges connects each vertex v; with its predecessor v;_; on
the same ray (compare figure 23 (a) and (b)). The capacities of all z-edges
are initialized to oo. Therefore, it costs oo each time a z-edge is cut.

By making sure that the seed point is in S and that the last voxel on
each ray is in T (see next section), a minimal s-t-cut (S,7") has to cut each
ray at least once. Yet, it does not cut any ray more than once because that
would cost at least 2 - co. This is why a ray is cut exactly one time. The
next section explains how CubeCut encourages this cut to happen close in

front of the vertebral body’s outer boundaries.

19In what follows, v;, will denote the corresponding vertex of the it" voxel on ray r.
Furthermore, if only one ray is being discussed, the indexing r might be omitted.

33

()

Figure 23: Illustration of the z-edges principle. (a) shows a ray without z-
edges: The minimal s-t-cut (red) cuts the ray twice with a capacity of 0. (b)
shows the same ray with z-edges. The ray is only cut once. The capacity
of the minimal s-t-cut is co + 5. (c¢) shows z-edges, embedded into an MR
image.

6.5 O-links: Marking the Outer Boundaries
6.5.1 Frames of Reference

A voxel p;, is characterized by (x; ., v, 2., ¢;.) where x;_,y;., z;, € Ng denote
the voxel’s position in the image and g;, € R denotes its grey value'l.
CubeCut investigates a small cube ((z1, 41, 21), (2, Y2, 22)) around the user-
defined seed point (inside the vertebra) and determines its interval of grey
values

I = [min(GV), maz(GV)),

HSimplified. Voxel coordinates assumed.

34

where
GV ={m(z,y,2,9)|11 v < 20,51 Sy <o, 21 <2< 20}

is the multi set of all grey values within the cube and m;(-) is a projection
onto the i** element of a tuple. Furthermore, CubeCut also iterates over the
cube to determine an average grey value g,y by

T2 Y2 z2

1
Javg = GV ‘ ///m(x,y, z,9)dx dy dz.

1 Y1 21

In the course of weighting the o-links, the interval I and the average grey
value gqy are used as frames of reference.

6.5.2 Capacities

Figure 24 depicts the fundamental principle of how CubeCut assigns capac-
ities to the o-links.

The oo-weighting in line 0 ensures that the seed point is tagged with L;.
The premise on which this is based is that the user defines the seed point
within the vertebral body (in the center).

Furthermore, it is assumed that the last voxel on each ray (py,.) lies outside
the vertebra (since the user is supposed to define a ray length that exceeds
the vertebral body). So as to make sure that the last voxels are tagged
with L;, the t-links (vy,,t) are also oo-weighted while for all rays c(s, vy,) is
consequently initialized to zero (line 4 - 6).

The capacities of all of the other, intermediate o-links reflect the value
difference between a voxel and its predecessor on the ray (lines 8,9,11 & 12).
This is in order to “mark” the outer boundaries:

As already mentioned above, the rays expand from the user-defined seed
point in the center of the vertebral body and they eventually intersect with
the outer boundaries. Ignoring occasional outliers and homogeneous object-
background transition regions for now, the inner vertebral body is character-
ized by a homogeneous set of voxel grey values, which are all higher or lower
than the grey values that make up the outer boundaries (e.g. cortical bone,
spinal canal, compare Ch. 2.1).

Thus, on each ray, the difference in value between the last voxel in the
vertebral body and the first voxel on the outer boundaries can be assumed

35

c(s,v1) = 00
c(vy,t) <0
assign(ray r)
Vpi, = (Xi,¥i, 21, 81) € r\{p1, }
if 1==2x%
c(s,vi) <0
c(vi,,t) < o0
else if g€l or abs(gavg—8i) < abs(8ave — 8i-1)
c(s, vi,) < abs(abs(gavg — gi) — abs(gavg — 8i-1))
c(vi,t) <0

© 0 N O Ot = W NN = O

—
]

else

—_
—

c(s,vi) <0
C(Virat) — abs(abs(gavg - gi) - abs(gavg - gifl))

—_
[\

Figure 24: Pseudo code of s-t-weighting. Each ray r consists of k voxels.

high. Taking the condition in line 7 into account, the outer boundaries there-
fore implement high t-link capacities (line 12). Note that this makes a cut
right in front of the corresponding vertices very probable. The next sections
explain how peculiarities and anomalies in vertebral MRI data sometimes
prevent a cut from happening right in front of the outer boundaries and how
CubeCut addresses these adverse effects.

6.6 Adverse Effects on the Segmentation Result

A cut right in front of the outer boundaries is a cut that separates the last
vertex that corresponds to a voxel which is still located inside the vertebral
body from the subsequent ones on the same ray. If, for each ray, the cut
takes place right in front of the outer boundaries of the vertebral body, then
CubeCut returns a satisfactory segmentation result.

Let v;. be the first vertex on a ray r that corresponds to a voxel on the

36

Figure 25: Successful cut.

outer boundaries/background. If a minimal s-t-cut (S,7") cuts the ray right
in front of v;,, so that v;_y), € S and v;, € T, then

k—1 k—1
C<87 /Ujr) < C(/Ujr’ t) (3)
j=i =i
and
i—1 -1
Vh <i: h>1:>2 c(vj,, t SZ c(s,vj,). (4)
Jj=h Jj=h

For most rays, the two (minimum) conditions hold true and thus, the cut
takes place right in front of the outer boundaries.

(3) usually holds true because the value difference between p;, and p;_1),
is greater than the sum of the subsequent s-weights since behind the outer
boundaries, the rays mostly penetrate homogeneous areas dissimilar from the
vertebral body (compare Figure 24 lines 7 & 8). (4) holds true for most rays
because of the homogeneity of voxel grey values in the vertebral body and
their similarity to the close environment of the seed point (compare Figure
24, lines 7,8 & 12). Nevertheless, there are exceptions.

Figure 26 depicts such exceptions. (a) clearly shows a 2-dimensional view
of a segmentation result that overruns the vertebral body in the upper part.
For the corresponding rays, (3) does not hold true:

The similarity between the vertebral and the intervertebral voxels, in
terms of their grey values, can easily be recognised. Furthermore there are
minor variations of grey values in the intervertebral disc. As a consequence,
the condition in Figure 24, line 7 holds true for a sufficient number of back-
ground voxels on each of the affected rays, which is why (3) is not satisfied.

37

Thus, the overrun occurs. Observe that the same applies to homogeneous
object-background transition regions (compare Ch. 2.1). Among others,
CubeCut tackles this problem by introducing a coefficient w, which loads
the s-weights according to their distance from the seed point (see next sec-
tion). The pseudo code in Figure 24 (line 8) is extended to:

C(Sa Vir) < W(ia k) : abs(abs(gavg - gl) - abs(gavg - gi—l))

(a) (b)

Figure 26: Adverse effects on segmentation results (2-dimensional view). (a)
shows an overrun in the upper part due to a violation of condition (3). (b)
shows a segmentation result affected by an outlier which causes a violation
of condition (4). The cut happens too close to the seed point (not shown) in
the middle of the vertebra because there is a light area similar to the spinal
canal.

Another phenomenon that negatively affects the segmentation result is
outliers. Qutliers share all relevant properties (grey values) that distinguish
the vertebra’s boundaries except that they are part of the inner vertebral
body.

To be specific, an outlier causes the violation of (4). On the correspond-
ing ray, the cut then happens too close to the seed point (see Figure 26(b)).
CubeCut decreases the possible adverse effects due to outliers by impos-
ing a smoothness constraint on the segmentation result. In addition, the
smoothness constraint also addresses the problem of a violation of (3), as
discussed above. The next two sections present CubeCut’s problem-solving

38

approaches in detail. The first matter to be addressed will be the loading of
the s-capacities and then the smoothness constraint will be discussed.

6.7 Loading the s-Capacities

The coefficient w(-) loads an s-capacity according to the corresponding voxel’s
(ps,.) position on the ray. For a ray r, consisting of k(> 1) voxels, it is defined
as:

w(i, k) =mi+Db,

where
kZ/LEN>()
and .
m=———
kE—1
and
b=1—-—m
/_\0 /_\0
8/_\1‘0 ?U5oo S/_\%' §U5oo
\0 w | g \O S
10 e <. 7.5 e <
00 > NG 50 X 3.5 \
?1& 0 \ ?UQ 0 \
v1 \/t v1 _/t

~_ ~_

(a) (b)

Figure 27: Effect of the coefficient w. In (b), w is applied on the s-weights
in (a): The cut, with a capacity of oo 4 2.5, now happens closer to the seed
point. Note that the same cut in (b) would have cost oo + 10 whereas the
cut depicted in (b) has a capacity of only oo + 5.

Observe that since the voxels are distributed uniformly on each ray,
w(i, k) = 1 for the seed point (p;=1), w(-, k) = 0.5 for a voxel that is half way

39

on a ray (see Figure 28) and w(-, k) = 0 for the last voxel on each ray. A
voxel far away from the seed point is more likely to be outside the vertebral
body.

CubeCut takes this into account by decreasing its s-capacity accordingly,
thereby reducing the risk of a cut being located behind the outer boundaries
of the vertebral body because

k—1 k—1
j=i =i

As already mentioned above, the coefficient is not the only measure CubeCut
takes in order to counteract a violation of (3): The smoothness constraint,
which also addresses a violation of (4), will be the subject matter in the next
section.

w(-) =0.5

/\QQQQQlQQQQO

seed point

Figure 28: Courses of w(i,11) (green) and w(i, 15) (red). The upper part
illustrates that w(i, k) reflects the position of the voxel p; on a ray consisting
of k uniformly distributed voxels. Note that that w is only partially defined
for the natural numbers but that CubeCut never calls w with an argument
in the undefined scope (compare Figure 24).

40

6.8 XY-edges: Imposing a Smoothness Constraint

The smoothness constraint is based on the optimal surface segmentation
algorithm developed by Kang Li et al. [29]. It is useful to first discuss it
conceptually, slightly detached from the context of vertebral segmentation.

A single, feasible surface in a volumetric Image I = (X,Y,7), where
XY, Z C Ny, can be characterised by a bijection
S: XY — Z,

where XY C X x Y is a cohesive area. Li et al. refer to a surface as feasible
if two smoothness constraints are satisfied:

V(z,y),(x+1,y) € XY :|S(z,y) = Sz + 1,y)| <A,

and

A, and A, constrain the degree to which the surface “moves” upwards or
downwards in x- or y-direction within an interval of one: S(z,y) and S(x +
1,y) as well as S(z,y) and S(x,y + 1) are neighboring x- and y-positions.
Thus, two neighbors on a feasible surface cannot be arbitrarily distant from
each other. Hereby, the smoothness constraints assure what Li et al. refer
to as “surface connectivity”. Observe that for a plane A, = A, = 0.

Now consider a number of equidistant rays that consist of the same num-
ber of uniformly spread voxels and which all extend parallel to the z-axis.
The voxels that make up a ray do not necessarily have to lie on neighboring
positions in the image. Furthermore, for convenience, assume that [is a
binary image with only two possible values for each voxel: colored xor white.
In addition, let all rays intersect with a colored surface S(XY') in I, which
means that each ray extends from XY and shares exactly one colored voxel
with the surface.

In this context, in which only a subset of the image’s voxels is observed,
the smoothness constraint has to be defined via the neighborhood relations
of the rays. Figure 29 shows four neighboring rays in x-direction (same y-
value for each voxel), which extend parallel to the z-axis, as described above.
Here, a smoothness parameter A, = 1 means that for a colored voxel that
is considered part of the surface, all voxels on adjacent rays that are also
classed with the surface voxels must lie on the same “z-layer” or the next
upper or lower one. An outlier in this context is a colored voxel that exceeds
the prescribed maximum distance.

41

Figure 29: A feasible surface and intersecting rays (transformed in x-direction
for a better visibility). The green node depicts an outlier as it would violate
the smoothness constraint A, = 1 if classed with the surface voxels.

CubeCut allows the user to impose a smoothness constraint on the seg-
mentation result. It interprets each of the six sides of a vertebral body’s outer
boundaries (from a sagittal view: front, back, top, bottom, right, and left)
as a feasible surface. Furthermore, it takes into account that the six surfaces
are anatomically connected, which is why the neighborhood relations overlap
at the “edges” of the boundaries (see Figure 32).

6.8.1 Implementation

CubeCut implements the smoothness constraint A € Ny by introducing a set
of infinity-weighted xy-edges

Aﬂﬁy = {(Uira U(ma:p{ifA,l})y,/N(T, T/) S N4}

N, denotes a 4—neighborhood as illustrated in Figure 30. As already men-
tioned above, the neighborhood relations overlap at the “edges” of the cubic
voxel subset that the algorithm observes (see Figure 32).

42

Figure 30: Illustration of 4-neighborhood (N4, red square) and 8-
neighborhood (Ng, black square).

The infinity-weighting of the xy-edges ensures that a minimal s-t-cut cuts
the rays in a way such that the vertebra is segmented within the boundaries
of the user-defined smoothness constraint A. Note that for a given A-value,
an 8—neighborhood would increase the “stiffness” of the segmentation result.

U41 ’042 U43 U41 U42 U43
Ao e A e
113: N Us, © o7 Usg U3,y U3, Uss
NS N/

1)21 ?}22 ’U23 UQI - 1122 - 1)23
N1/ N1/

vl U1

Figure 31: Tllustration of the xy-edges principle. (a) shows a minimal cut
(thick lines) and the two possible continuations (dashed lines) within the
boundaries of a smoothness constraint A = 1. All other cuts would have a
capacity greater than 7-o00. (b) shows the only possible continuation within
the boundaries of a A-value of 0, where the cut has a capacity of 3 - oco.

43

Figure 32: Topology of xy-edges for A =0 (a) and A =1 (b).

For a smoothness constraint A = 0, any minimal s-t-cut results in a
regular, cubic segmentation result, whereas a A-value greater zero allows a
corresponding deviation. The figure above shows the topology of the xy-
edges for a A-value of zero and a A-value of one. Below, corresponding
segmentation results are depicted.

(a) (b)

Figure 33: Segmentation results for A =0 (a) and A =1 (b).

44

7 Evaluation

7.1 Results

A C++ implementation of the new segmentation algorithm CubeCut was
evaluated within the medical image processing platform MeVisLab [1] ver-
sion 2.2.1 on a 2.1 GHz x64-based PC with 4 GB RAM running the Microsoft
Windows 7 Home Premium (SP1) operating system, version 6.1.7601. Com-
putationally, the most intensive parameter settings resulted in a maximum
processing time of 19.4 seconds (for subset selection, graph construction, s-t-
cut and triangulation) and a comparison with manually segmented vertebrae
resulted in a mean DSC of 81.88%, ranging from 71.64% to 86.69%.

After the s-t-cut (S,T'), the surface of CubeCut’s segmentation result
was determined by a triangulation over the last voxels in S on a ray, us-
ing the MeVisLab C++ class SoIndexedFaceSet. For the voxelization of
the data thus obtained, the MeVisLab module VoxelizeInventorScene was
deployed!?. The manual segmentations were conducted by a physician in a
slice-by-slice manner. For the voxelization of the manually segmented slices,
CSO0ConvertTo3DMask was used.

Table 4 summarizes the results and statistics of the vertebral segmenta-
tions. The five lumbar vertebrae (L1 - L5) and a thoracic one (T11) were
segmented both manually (by the physician) and automatically (by Cube-
Cut). Since the parameter settings in CubeCut are essential for the outcome
and processing time, the subsequent tables list the corresponding settings.

Table 4: Segmentation and comparison statistics: volumes of manual (m.)
and automatic (a.) segmentation results, volume of overlaps (0.) as well as

numbers of voxels (vox.) and dice similarity coefficient (dsc).
3

m./mm® a./mm? mvox. avox o./mm? o.wvox. dsc(%)

L1 23860.6 26314.3 2927 3228 21749.3 2668 86.6937
L2 27423 27431.1 3364 3365 23068.2 2832 84.173
L3 33830.4 28776.2 4150 3530 25686.6 3151 82.0573
L4 271214 239014 3327 2932 21064.5 2584 82.5691
L5 22165 177954 2719 2138 14314.7 1756 71.6442
T11 154234 16638 1892 2041 13491.4 1655 84.1597

12For replication, all parameter settings of all relevant modules are listed in the appendix.

45

Table 5: CubeCut parameter settings and corresponding processing times.
ppr stands for points per ray, = denotes the edge length of the outer cube
(biggest) measured in voxels (v.) and centimeters, dist denotes the distance
range between voxels on the smallest cube and the biggest respectively, A is
the smoothness constraint, spt is the position of the user-defined seed point
in the image and t denotes the corresponding overall processing time.

ppr w/vox. w/em dst/em A spt t/sec
L1 40 40 8 0.016-0.68 4 (73.5,44.5,18.5) 19.1
L2 40 40 8 0.016-0.68 4 (70.5,62.5,18.5) 19.0
L3 40 40 8 0.016-0.68 4 (68.5,80.5,18.5) 19.2
L4 40 40 8 0.016-0.68 4 (67.5,99.5,18.5) 19.4
L5 8 24 4.8 0.025-0.6 1 (70.5,117.5,18.5) 1.3
T11 40 40 8 0.016-0.68 4 (80.5,12.5,18.5) 19.4

(a) (b)

Figure 34: 3D segmentation results.

7.2 Discussion

According to recent publications in the field of vertebral segmentation in MRI
data, an initial mean DSC of around 80% can be considered “promising” [30].
However, the algorithm (CubeCut) is still in need of improvement. Further-
more, in order to draw a final conclusion on solid ground, more extensive
validations are needed.

46

Findings show that it takes a trained physician an average of 10.75%6.65
minutes to segment a single vertebra slice by slice [23]. In terms of processing
time, CubeCut therefore outperforms its target group by 3.78 - 10.43 minutes.

Furthermore, it accurately detects a gradually increasing volume from
T11 to L3 and the patient’s peculiar and unusually low volume of L4 as well
as the anatomically regular lower volume of L5 (compare Table 4). However,
a visual evaluation/comparison of CubeCut’s segmentation results indicates
that the algorithm frequently segments the same specific areas of a vertebral
body inaccurately. Recognizing the cubic shape of a vertebral body, on sagit-
tal slices, these areas could be referred to as the vertebral body’s “vertices”
(see Figure 35).

Future versions of CubeCut could overcome this problem by a densifica-
tion of rays in the corresponding spaces or by allowing the user to adjust the
segmentation result manually. In addition, the present version of CubeCut
already allows an arbitrary increase of the s-t-network’s complexity (preci-
sion), at the expense of processing time, of course.

Figure 35: Failed segmentations. “Vertices” of the vertebral body’s outer
boundaries were not detected (green circles). The upper part shows a 3D
segmentation result, the lower part shows the 2D overlaps of manual (red)
and automatic (white) segmentation results.

47

The accuracy of the algorithm’s segmentations depends on the parameter
settings as well as the position of the user-defined seed-point. Nevertheless,
the results suggest that once appropriate parameter settings are found for
a vertebral body, these settings can also be successfully applied on other
vertebrae (compare Table 4). L5 is an exception but note that L5 also differs
significantly from the other lumbar and thoracic vertebrae in terms of bone
morphology, shape and size.

In the course of evaluation, overruns still occurred. If, however, the
smoothness constraint and the loading of the s-weights were disabled, the
quantity of overruns and adverse effects due to outliers increased significantly.

48

8 Conclusion

A novel 3D vertebral body segmentation approach was presented. Although
there is still room for improvement, the graph-based algorithm (CubeCut)
achieved a promising average DSC value of 81.88% in an initial evaluation of
a C++ implementation within the medical processing platform MeVisLab.
Furthermore, its suitability for medical use, in terms of processing time, could
be demonstrated.

Enhancing the previously introduced 2D strategy SquareCut, CubeCut
recognizes the cubic shapes of vertebral bodies. It allows the user to im-
pose a smoothness constraint on the segmentation result which determines
its degree of deviation from a cubic-shaped template. As a result, it effec-
tively reduces adverse effects due to weak boundaries (homogeneous object-
background transition regions) and outliers, for example.

CubeCut generates a two-terminal s-t-network where the vertices corre-
spond to a cubic shaped subset of the image’s voxels. The capacities of the
terminal edges reflect a voxel’s affiliation with the object (vertebral body)
and the background, while the topology of non-terminal oo-weighted edges
implements the smoothness constraint. After network construction, a mini-
mal s-t-cut is computed which determines the segmentation result.

For the mincut computation, CubeCut deploys the Boykov-Kolmogorov
algorithm. This is based on experimental findings which suggest that despite
a worst case complexity of O(v(G)?e(G)|Crin|), where v(G) is the number
of vertices, e(G) the number of edges and |Cy,;,| the capacity of a minimal
cut, the algorithm is most effective for networks of low complexity. CubeCut
implements an Ng neighborhood system (including terminal edges) which
means the network can be classed with the less complex ones.

The graph construction takes CubeCut O(v(G) + 8- v(G)) steps and this
results in an overall worst time complexity of O(v(G)?e(G)|Chinl). The pa-
rameter settings that resulted in a DSC value of 86.6937% took CubeCut 19.1
seconds to terminate (graph construction, mincut computation and triangu-
lation). It was found that a slice-by-slice segmentation of a vertebra took
trained physicians 1076.65 minutes on average and a susequent conversion
into a 3D mask is also still needed here.

49

References

1]

MeVisLab Reference Manual, MeVis Medical Solutions AG and
Fraunhofer MEVIS, September 20 2012. [Online]. Available:
http://www.mevislab.de/

M. Y.M.Chen, T. L. Pope, and D. J. Ott, Eds., Basic Radiology, 2nd ed.
McGraw Hill Medical, 2011.

R. L. Drake, A. W. Vogl, and A. W. M. Mitchell, Eds., Gray’s Anatomy
for Students, 2nd ed. Richardson - Elsevier /Churchill Livingstone, 2010.

A. F. Joaquim, C. A. Sansur, D. K. Hamilton, and C. I. Shaffrey,
“Degenerative lumbar stenosis,” Arquivos de Neuro-Psiquiatria, vol.
67(2B), pp. 553-558, 2009. [Online|. Available: http://www.scielo.br/

J. N. Weinstein, J. D. Lurie, T. D. Tosteson, B. Hanscom, A. N.
Tosteson, E. A. Blood, N. J. Birkmeyer, A. S. Hilibrand, H. Herkowitz,
F. P. Cammisa, T. J. Albert, S. E. Emery, L. G. Lenke, W. A. Abdu,
M. Longley, T. J. Errico, and S. S. Hu, “Surgical versus nonsurgical
treatment for lumbar degenerative spondylolisthesis,” The New England
Journal of Medicine, vol. 356, pp. 2257-2270, 2007. [Online]. Available:
http://www.nejm.org/

J. Miao, S. Wang, Z. Wan, W. Park, Q. Xia, K. Wood, and
G. Li, “Motion characteristics of the vertebral segments with
lumbar degenerative spondylolisthesis in elderly patients,” Furopean
Spine Journal, 2012, epub ahead of print. [Online]. Available:
http://www.ncbi.nlm.nih.gov/

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R.
Kaus, S. J. Haker, W. M. Wells, F. A. Jolesz, and R. Kikinis,
“Statistical validation of image segmentation quality based on a spatial
overlap index,” Academic Radiology, vol. 11(2), pp. 178-189, 2004.
[Online]. Available: www.academicradiology.org/

K. G. Baum, E. Schreyer, S. Totterman, J. Farber, J. Tamez-Pena,
and P. Gonzalez, “Application of the dice similarity coefficient
(dsc) for failure detection of a fully-automated atlas based knee
mri segmentation method.” ISMRM Annual Meeting, March 2010,
stockholm, SW. [Online]. Available: http://www.qmetricstech.com/

50

[9]

[10]

[11]
[12]

[13]

[14]

[15]

L. R. Dice, “Measures of the amount of ecologic association between
species,” Fcology, vol. 26, pp. 297-302, 1945.

D. Jungnickel, Graphs, Networks and Algorithms, 5th ed. Springer,
2004.

J. A. Bondy and U. S. R. Murty, Graph Theory. Springer, 2008.

U. Knauer, Algebraic Graph Theory : Morphisms, Monoids, and Matri-
ces. De Gruyter, 2011.

A. Gibbons, Algorithmic Graph Theory. Cambridge University Press,
1985.

H. Walther, Anwendungen der Graphentheorie. Vieweg+Teubner Ver-
lag, 1979.

N. Christofides, Graph Theory - An Algorithmic Approach, 4th ed. Aca-
demic Press, 1975.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. MIT Press and McGraw-Hill, 2001.

L. R. Ford and D. R. Fulkerson, Flows in Networks, 6th ed. Princeton
University Press, 1974.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization : Al-
gorithms and Complexity. Prentice Hall, 1982.

H. Walther and G. Nagler, Graphen, Algorithmen, Programme.
Springer, 1987.

A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-
flow problem,” Journal of the Association for Computing Machinery,
vol. 35(4), pp. 921-940, 1988.

Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision.” IEEFE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp.
1124-1137, 2004.

51

22]

23]

[24]

[25]

[27]

[30]

E. A. Dinic, “Algorithms for solution of a problem of maximum flow
in networks with power estimation,” Sowviet Math. Dokl., vol. 11, pp.
1277-1280, 1970.

J. Egger, T. Kapur, T. Dukatz, M. Kolodziej, D. Zukic, B. Freisleben,
and C. Nimsky, “Square-cut: A segmentation algorithm on the basis of
a rectangle shape,” PLoS ONE, vol. 7(2), 2012.

J. Egger, B. Freisleben, C. Nimsky, and T. Kapur, “Template cut: A
pattern-based segmentation paradigm,” Nature - Scientific Reports, Na-
ture Publishing Group (NPG), vol. 2(420), 2012.

J. Egger, M. H. A. Bauer, D. Kuhnt, B. Carl, C. Kappus, B. Freisleben,
and C. Nimsky, “Nugget-cut: A segmentation scheme for spherically-
and elliptically-shaped 3d objects,” 32nd Annual Symposium Of The
German Association For Pattern Recognition (DAGM), pp. 383-392,
2010.

J. Egger, B. Freisleben, R. Setser, R. Renapuraar, C. Biermann, and
T. O’Donnell, “Aorta segmentation for stent simulation,” 12th Inter-
national Conference On Medical Image Computing And Computer As-
sisted Intervention (MICCAI), Cardiovascular Interventional Imaging
And Biophysical Modelling Workshop, pp. 1 — 10, 2009.

J. Egger, T. O’Donnell, C. Hofgartner, and B. Freisleben, “Graph-based
tracking method for aortic thrombus segmentation,” Proceedings of 4th
Furopean Congress For Medical And Biomedical Engineering, Engineer-

ing For Health, pp. 584-587, 2008.

D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori
estimation for binary images,” Journal of the Royal Statistical Society,
Series B, vol. 51(2), pp. 271-279, 1989.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation
in volumetric images - a graph theoretic approach,” IEEFE Transactions
On Pattern Analysis And Machine Intelligence (PAMI), vol. 28, pp.
119-134, 2006.

A. Neubert, J. Fripp, S. Kaikai, O. Salvado, R. Schwarz, L. Lauer, C. En-
gstrom, and S. Crozier, “Automated 3d segmentation of vertebral bodies

52

and intervertebral discs from mri,” International Conference on Digi-
tal Image Computing Techniques and Applications (DICTA), pp. 19-24,
2011.

53

A Publication

o4

S BRIGHAM AND

&

] % National Center for Image Guided Therapy WOMEN’S HOSPITAL
E£I;

HARVARD
MEDICAL SCHOOL

Universitdt
Marburg

Surgical Planning Laboratory

®

Graph-Based Vertebra Segmentation Using a Cubic Template

Robert Schwarzenberg??, Tina Kapur, Ph.D.2, William Wells, Ph.D.2, Christopher Nimsky, M.D., Ph.D
Bernd Freisleben, Ph.D.b, Jan Egger, Ph.D., Ph.D.2bsc
a Dept. of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
b Dept. of Mathematics and Computer Science, University of Marburg, Marburg, Germany,
¢ Dept. of Neurosurgery, University of Marburg, Marburg, Germany
{ rs | tkapur | sw | egger }@bwh.harvard.edu, { egger | nimsky }@med.uni-marburg.de, freisleb@informatik.uni-marburg.de

The current development of the population’s structure leads to a growing part of older

patients with a more frequent insistence for surgical treatment like lumbar spinal stenosis
(LS), which is the most common cause of spinal surgery in individuals older than 65 years
of age [1]. For the assessment of spinal structures such as nerve roots, intervertebral discs
and ligamentary constitution, Magnetic Resonance Imaging (MRI) is in general suitable.
However, certain changes of the vertebra due to osteoporosis, fractures or osteophytes,

require an evaluation of the bone structures via Computed Tomography (CT)-scans, which

Figure 2: Topology of xy-edges. Left: Smoothness constraint A = 0. Right: A= 1.

include radiation exposure [2]. In this contribution, we want to illustrate the capability of

MRI-segmentation to reconstruct the vertebral body without x-ray examination, leading to
For testing the presented segmentation method we used a C++ implementation within the
less pre-operative examinations and therefore affecting radiation exposure costs and time-
medical prototyping platform MeVisLab (see http://www.mevislab.de). The overall segmentation —

management.

sending rays, graph construction and mincut computation — in our implementation took about
twenty seconds on an Intel 2.1 GHz CPU, 4 GB RAM, Windows 7 Home Premium x64 Version,

SP 1. We carried out an initial evaluation, segmenting 5 vertebrae: The average DSC was 83%.

Figure 1: Left: Distribution of vertices. Right: Visualization of z-edges. X . X .
Figure 3: Left: Segmentation result for A = 0. Right: Segmentation result for A = 2.

The presented approach is an extension of our previously introduced strategy [3, 4] to a

Conclusi

In this contribution, we presented the initial results for a novel vertebra 3D segmentation

third dimension. It starts by setting up a directed, weighted, two-terminal 3D-graph G = (V,E)

method. The method enhances our recently developed algorithm to a third dimension.
(an s-t-network). After its construction, the minimal closed set on the graph is calculated via

Whereas the previously introduced algorithm allowed the calculation of a vertebral area
a polynomial time s-t-cut [5], creating a 3D segmentation of the vertebral body. The vertices

(2D), the method presented here determines the volume of a vertebra (3D) (see figure 4). It
v € V \ {s,t} are distributed along several rays that extend from a user-defined seed point

constructs an s-t-network within a cubic-shaped template and allows the user to impose a
inside the vertebra and intersect with the vertebral body’s outer boundaries. All rays are

smoothness constraint on the segmentation result which determines the result’s deviation
made up of the same number of vertices and each layer forms a cube shape (see figure 1).

from a regular cube shape. The segmentation result is computed by a polynomial s-t-cut,
There are two types of edges e € E. n-links connect all vertices to a virtual source s and a

creating an optimal segmentation of the vertebra’s outer boundaries. A first evaluation led to
virtual sink t and the n-links’ capacities reflect a node’s affiliation with either the source

an average DSC of 83 %.
(vertebra) or the sink (background). A set of infinity-weighted i-links connects the vertices on

the rays with each other. The i-links are further subdivided into z-edges (see figure 1) and _
xy-edges (see figure 2). The z-edges ensure that each ray is cut exactly one time, while the X
xy-edges allow the user to impose a smoothness constraint A on the segmentation result N
[6]. A A-value of zero results in a regular, cubic shape, whereas a A-value greater zero

allows a corresponding deviation (see figure 3). Figure 4: Left and middle: 3D segmentation results. Right: 2D Segmentation result.

References

[1] A.F. Joaquim, et al. Degenerative lumbar stenosis: update. Arq Neuropsiquiatr 67(2B): 553-8, 2009.

[2] P.J. Richards, et al. Spine computed tomography doses and cancer induction. Spine (Phila Pa 1976) 35(4): 430-3, 2010.

[3] J. Egger, T. Kapur, T. Dukatz, M. Kolodziej, D. Zukic, B. Freisleben, and C. Nimsky. Square-Cut: A Segmentation Algorithm on the Basis of a Rectangle Shape. In: PLoS ONE, 2012.

[4] J. Egger, B. Freisleben, C. Nimsky, and T. Kapur. Template-Cut: A Pattern-Based Segmentation Paradigm. In: Nature - Scientific Reports, Nature Publishing Group (NPG), 2(420), 2012.
[5] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9), pp. 1124-1137, 2004.

[6] K. Li, X. Wu, D.Z. Chen, and M. Sonka. Optimal Surface Segmentation in Volumetric Images — A Graph-Theoretic Approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 28(1): 119-134, 2006.

NIH Image Guided Therapy Wor 2012, Joseph B. Martin Conference er, Boston, MA

B CubeCut Network

56

o7

C Parameter Settings

58

Parameter Settings
Dataset: Sch

Resample3D Resample Filter: Lanczos 3; Keep Constant: Image size; Use
isotropic voxel size 7 true; Image Size: x: 159 y: 159 z: 35; Voxel Size:
x: 2.01258 y: 2.01259 z: 2.01258; Scale Factor: x: 0.310547 y: 0.310546 z:
2.18625; Voxel Translation: x: 0 y: 0 z: 0; Filtering Tolerance: 0; Filter
always 7 false;

VoxelizeInventorScene Mode: Voxel Distance; Thickness: 0.2; Surface 7
true; Anti-alias 7 true; Colored ? true; Filled 7 true; Include border 7 true;
User super sampling ? false; Write Voxel Value: 1024; Fill Color: WHITE;
Alpha: 1; On ML image change ? false; On Inventor change ? true; On
parameter change 7 false; Copy input image ? false; DrawStyle as Inventor
scene ? false; Triangles 7 true; Lines 7 false; Points 7 false; Output number
of collected primitives 7 false;

Threshold Threshold: 1; Use relative threshold ? false;

Other default

59

D Eigenstandigkeitserklarung

60

Eigenstandigeitserklarung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstandig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
Die Stellen meiner Arbeit, die dem Wortlaut oder dem Sinn nach anderen
Werken entnommen sind, habe ich in jedem Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht. Diese Arbeit hat in dieser oder einer dhn-
lichen Form noch nicht im Rahmen einer Priifung vorgelegen.

Marburg, den 4. Oktober 2012

61

